26 research outputs found

    Testing numerical relativity with the shifted gauge wave

    Full text link
    Computational methods are essential to provide waveforms from coalescing black holes, which are expected to produce strong signals for the gravitational wave observatories being developed. Although partial simulations of the coalescence have been reported, scientifically useful waveforms have so far not been delivered. The goal of the AppleswithApples (AwA) Alliance is to design, coordinate and document standardized code tests for comparing numerical relativity codes. The first round of AwA tests have now being completed and the results are being analyzed. These initial tests are based upon periodic boundary conditions designed to isolate performance of the main evolution code. Here we describe and carry out an additional test with periodic boundary conditions which deals with an essential feature of the black hole excision problem, namely a non-vanishing shift. The test is a shifted version of the existing AwA gauge wave test. We show how a shift introduces an exponentially growing instability which violates the constraints of a standard harmonic formulation of Einstein's equations. We analyze the Cauchy problem in a harmonic gauge and discuss particular options for suppressing instabilities in the gauge wave tests. We implement these techniques in a finite difference evolution algorithm and present test results. Although our application here is limited to a model problem, the techniques should benefit the simulation of black holes using harmonic evolution codes.Comment: Submitted to special numerical relativity issue of Classical and Quantum Gravit

    Constraint-preserving boundary treatment for a harmonic formulation of the Einstein equations

    Get PDF
    We present a set of well-posed constraint-preserving boundary conditions for a first-order in time, second-order in space, harmonic formulation of the Einstein equations. The boundary conditions are tested using robust stability, linear and nonlinear waves, and are found to be both less reflective and constraint preserving than standard Sommerfeld-type boundary conditions.Comment: 18 pages, 7 figures, accepted in CQ

    Numerical Relativity Using a Generalized Harmonic Decomposition

    Get PDF
    A new numerical scheme to solve the Einstein field equations based upon the generalized harmonic decomposition of the Ricci tensor is introduced. The source functions driving the wave equations that define generalized harmonic coordinates are treated as independent functions, and encode the coordinate freedom of solutions. Techniques are discussed to impose particular gauge conditions through a specification of the source functions. A 3D, free evolution, finite difference code implementing this system of equations with a scalar field matter source is described. The second-order-in-space-and-time partial differential equations are discretized directly without the use first order auxiliary terms, limiting the number of independent functions to fifteen--ten metric quantities, four source functions and the scalar field. This also limits the number of constraint equations, which can only be enforced to within truncation error in a numerical free evolution, to four. The coordinate system is compactified to spatial infinity in order to impose physically motivated, constraint-preserving outer boundary conditions. A variant of the Cartoon method for efficiently simulating axisymmetric spacetimes with a Cartesian code is described that does not use interpolation, and is easier to incorporate into existing adaptive mesh refinement packages. Preliminary test simulations of vacuum black hole evolution and black hole formation via scalar field collapse are described, suggesting that this method may be useful for studying many spacetimes of interest.Comment: 18 pages, 6 figures; updated to coincide with journal version, which includes some expanded discussions and a new appendix with a stability analysis of a simplified problem using the same discretization scheme described in the pape

    3D simulations of linearized scalar fields in Kerr spacetime

    Get PDF
    We investigate the behavior of a dynamical scalar field on a fixed Kerr background in Kerr-Schild coordinates using a 3+1 dimensional spectral evolution code, and we measure the power-law tail decay that occurs at late times. We compare evolutions of initial data proportional to f(r) Y_lm(theta,phi) where Y_lm is a spherical harmonic and (r,theta,phi) are Kerr-Schild coordinates, to that of initial data proportional to f(r_BL) Y_lm(theta_BL,phi), where (r_BL,theta_BL) are Boyer-Lindquist coordinates. We find that although these two cases are initially almost identical, the evolution can be quite different at intermediate times; however, at late times the power-law decay rates are equal.Comment: 12 pages, 9 figures, revtex4. Major revision: added figures, added subsection on convergence, clarified discussion. To appear in Phys Rev

    Energy Norms and the Stability of the Einstein Evolution Equations

    Get PDF
    The Einstein evolution equations may be written in a variety of equivalent analytical forms, but numerical solutions of these different formulations display a wide range of growth rates for constraint violations. For symmetric hyperbolic formulations of the equations, an exact expression for the growth rate is derived using an energy norm. This expression agrees with the growth rate determined by numerical solution of the equations. An approximate method for estimating the growth rate is also derived. This estimate can be evaluated algebraically from the initial data, and is shown to exhibit qualitatively the same dependence as the numerically-determined rate on the parameters that specify the formulation of the equations. This simple rate estimate therefore provides a useful tool for finding the most well-behaved forms of the evolution equations.Comment: Corrected typos; to appear in Physical Review

    The discrete energy method in numerical relativity: Towards long-term stability

    Full text link
    The energy method can be used to identify well-posed initial boundary value problems for quasi-linear, symmetric hyperbolic partial differential equations with maximally dissipative boundary conditions. A similar analysis of the discrete system can be used to construct stable finite difference equations for these problems at the linear level. In this paper we apply these techniques to some test problems commonly used in numerical relativity and observe that while we obtain convergent schemes, fast growing modes, or ``artificial instabilities,'' contaminate the solution. We find that these growing modes can partially arise from the lack of a Leibnitz rule for discrete derivatives and discuss ways to limit this spurious growth.Comment: 18 pages, 22 figure

    Radiation tails and boundary conditions for black hole evolutions

    Full text link
    In numerical computations of Einstein's equations for black hole spacetimes, it will be necessary to use approximate boundary conditions at a finite distance from the holes. We point out here that ``tails,'' the inverse power-law decrease of late-time fields, cannot be expected for such computations. We present computational demonstrations and discussions of features of late-time behavior in an evolution with a boundary condition.Comment: submitted to Phys. Rev.

    Strongly Hyperbolic Extensions of the ADM Hamiltonian

    Full text link
    The ADM Hamiltonian formulation of general relativity with prescribed lapse and shift is a weakly hyperbolic system of partial differential equations. In general weakly hyperbolic systems are not mathematically well posed. For well posedness, the theory should be reformulated so that the complete system, evolution equations plus gauge conditions, is (at least) strongly hyperbolic. Traditionally, reformulation has been carried out at the level of equations of motion. This typically destroys the variational and Hamiltonian structures of the theory. Here I show that one can extend the ADM formalism to (i) incorporate the gauge conditions as dynamical equations and (ii) affect the hyperbolicity of the complete system, all while maintaining a Hamiltonian description. The extended ADM formulation is used to obtain a strongly hyperbolic Hamiltonian description of Einstein's theory that is generally covariant under spatial diffeomorphisms and time reparametrizations, and has physical characteristics. The extended Hamiltonian formulation with 1+log slicing and gamma--driver shift conditions is weakly hyperbolic.Comment: This version contains minor corrections and clarifications. The format has been changed to conform with IOP styl

    Numerical Relativity: A review

    Full text link
    Computer simulations are enabling researchers to investigate systems which are extremely difficult to handle analytically. In the particular case of General Relativity, numerical models have proved extremely valuable for investigations of strong field scenarios and been crucial to reveal unexpected phenomena. Considerable efforts are being spent to simulate astrophysically relevant simulations, understand different aspects of the theory and even provide insights in the search for a quantum theory of gravity. In the present article I review the present status of the field of Numerical Relativity, describe the techniques most commonly used and discuss open problems and (some) future prospects.Comment: 2 References added; 1 corrected. 67 pages. To appear in Classical and Quantum Gravity. (uses iopart.cls

    Fermi surface topology and low-lying quasiparticle structure of magnetically ordered Fe1+xTe

    Full text link
    We report the first photoemission study of Fe1+xTe - the host compound of the newly discovered iron-chalcogenide superconductors. Our results reveal a pair of nearly electron- hole compensated Fermi pockets, strong Fermi velocity renormalization and an absence of a spin-density-wave gap. A shadow hole pocket is observed at the "X"-point of the Brillouin zone which is consistent with a long-range ordered magneto-structural groundstate. No signature of Fermi surface nesting instability associated with Q= pi(1/2, 1/2) is observed. Our results collectively reveal that the Fe1+xTe series is dramatically different from the undoped phases of the high Tc pnictides and likely harbor unusual mechanism for superconductivity and quantum magnetic order.Comment: 5 pages, 4 Figures; Submitted to Phys. Rev. Lett. (2009
    corecore