10,507 research outputs found
Correlations in an expanding gas of hard-core bosons
We consider a longitudinal expansion of a one-dimensional gas of hard-core
bosons suddenly released from a trap. We show that the broken translational
invariance in the initial state of the system is encoded in correlations
between the bosonic occupation numbers in the momentum space. The correlations
are protected by the integrability and exhibit no relaxation during the
expansion
Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States
We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent
and thermal quantities in quantum systems. For time-dependent systems, we
modify a previous mapping to quantum circuits to significantly reduce the
computer resources required. This modification is based on a principle of
"observing" the system outside the light-cone. We apply this method to study
spin relaxation in systems started out of equilibrium with initial conditions
that give rise to very rapid entanglement growth. We also show that it is
possible to approximate time evolution under a local Hamiltonian by a quantum
circuit whose light-cone naturally matches the Lieb-Robinson velocity.
Asymptotically, these modified methods allow a doubling of the system size that
one can obtain compared to direct simulation. We then consider a different
problem of thermal properties of disordered spin chains and use quantum belief
propagation to average over different configurations. We test this algorithm on
one dimensional systems with mixed ferromagnetic and anti-ferromagnetic bonds,
where we can compare to quantum Monte Carlo, and then we apply it to the study
of disordered, frustrated spin systems.Comment: 19 pages, 12 figure
Field-theory results for three-dimensional transitions with complex symmetries
We discuss several examples of three-dimensional critical phenomena that can
be described by Landau-Ginzburg-Wilson theories. We present an
overview of field-theoretical results obtained from the analysis of high-order
perturbative series in the frameworks of the and of the
fixed-dimension d=3 expansions. In particular, we discuss the stability of the
O(N)-symmetric fixed point in a generic N-component theory, the critical
behaviors of randomly dilute Ising-like systems and frustrated spin systems
with noncollinear order, the multicritical behavior arising from the
competition of two distinct types of ordering with symmetry O() and
O() respectively.Comment: 9 pages, Talk at the Conference TH2002, Paris, July 200
Frustrated magnets in three dimensions: a nonperturbative approach
Frustrated magnets exhibit unusual critical behaviors: they display scaling
laws accompanied by nonuniversal critical exponents. This suggests that these
systems generically undergo very weak first order phase transitions. Moreover,
the different perturbative approaches used to investigate them are in conflict
and fail to correctly reproduce their behavior. Using a nonperturbative
approach we explain the mismatch between the different perturbative approaches
and account for the nonuniversal scaling observed.Comment: 7 pages, 1 figure. IOP style files included. To appear in Journal of
Physics: Condensed Matter. Proceedings of the conference HFM 2003, Grenoble,
Franc
Entanglement properties of quantum spin chains
We investigate the entanglement properties of a finite size 1+1 dimensional
Ising spin chain, and show how these properties scale and can be utilized to
reconstruct the ground state wave function. Even at the critical point, few
terms in a Schmidt decomposition contribute to the exact ground state, and to
physical properties such as the entropy. Nevertheless the entanglement here is
prominent due to the lower-lying states in the Schmidt decomposition.Comment: 5 pages, 6 figure
Harmonic crossover exponents in O(n) models with the pseudo-epsilon expansion approach
We determine the crossover exponents associated with the traceless tensorial
quadratic field, the third- and fourth-harmonic operators for O(n) vector
models by re-analyzing the existing six-loop fixed dimension series with
pseudo-epsilon expansion. Within this approach we obtain the most accurate
theoretical estimates that are in optimum agreement with other theoretical and
experimental results.Comment: 12 pages, 1 figure. Final version accepted for publicatio
Quantum Many-Body Dynamics of Coupled Double-Well Superlattices
We propose a method for controllable generation of non-local entangled pairs
using spinor atoms loaded in an optical superlattice. Our scheme iteratively
increases the distance between entangled atoms by controlling the coupling
between the double wells. When implemented in a finite linear chain of 2N
atoms, it creates a triplet valence bond state with large persistency of
entanglement (of the order of N). We also study the non-equilibrium dynamics of
the one-dimensional ferromagnetic Heisenberg Hamiltonian and show that the time
evolution of a state of decoupled triplets on each double well leads to the
formation of a highly entangled state where short-distance antiferromagnetic
correlations coexist with longer-distance ferromagnetic ones. We present
methods for detection and characterization of the various dynamically generated
states. These ideas are a step forward towards the use of atoms trapped by
light as quantum information processors and quantum simulators.Comment: 13 pages, 10 figures, references adde
Quantum Quench from a Thermal Initial State
We consider a quantum quench in a system of free bosons, starting from a
thermal initial state. As in the case where the system is initially in the
ground state, any finite subsystem eventually reaches a stationary thermal
state with a momentum-dependent effective temperature. We find that this can,
in some cases, even be lower than the initial temperature. We also study
lattice effects and discuss more general types of quenches.Comment: 6 pages, 2 figures; short published version, added references, minor
change
Exact boundary conditions in numerical relativity using multiple grids: scalar field tests
Cauchy-Characteristic Matching (CCM), the combination of a central 3+1 Cauchy
code with an exterior characteristic code connected across a time-like
interface, is a promising technique for the generation and extraction of
gravitational waves. While it provides a tool for the exact specification of
boundary conditions for the Cauchy evolution, it also allows to follow
gravitational radiation all the way to infinity, where it is unambiguously
defined.
We present a new fourth order accurate finite difference CCM scheme for a
first order reduction of the wave equation around a Schwarzschild black hole in
axisymmetry. The matching at the interface between the Cauchy and the
characteristic regions is done by transfering appropriate characteristic/null
variables. Numerical experiments indicate that the algorithm is fourth order
convergent. As an application we reproduce the expected late-time tail decay
for the scalar field.Comment: 14 pages, 5 figures. Included changes suggested by referee
Entanglement entropy of two disjoint intervals in c=1 theories
We study the scaling of the Renyi entanglement entropy of two disjoint blocks
of critical lattice models described by conformal field theories with central
charge c=1. We provide the analytic conformal field theory result for the
second order Renyi entropy for a free boson compactified on an orbifold
describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual
line. We have checked this prediction in cluster Monte Carlo simulations of the
classical two dimensional AT model. We have also performed extensive numerical
simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor
network techniques that allowed to obtain the reduced density matrices of
disjoint blocks of the spin-chain and to check the correctness of the
predictions for Renyi and entanglement entropies from conformal field theory.
In order to match these predictions, we have extrapolated the numerical results
by properly taking into account the corrections induced by the finite length of
the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure
- …