2 research outputs found

    Preventive role of Pycnogenol (R) against the hyperglycemia-induced oxidative stress and DNA damage in diabetic rats

    No full text
    WOS: 000458712400006PubMed: 30465898Diabetes mellitus, a complex progressive metabolic disorder, leads to some oxidative stress related complications. Pycnogenol (R) (PYC), a plant extract obtained from Pinus pinaster, has been suggested to be effective in many diseases including diabetes, cancer, inflammatory and immune system disorders. The mechanisms underlying the effects of PYC in diabetes need to be elucidated. The aim of this study was to determine the effects of PYC treatment (50 mg/kg/day, orally, for 28 days) on the DNA damage and biochemical changes in the blood, liver, and kidney tissues of experimental diabetic rats. Changes in the activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase enzymes, and the levels of 8-hydroxy-2'-deoxyguanosine, total glutathione, malondialdehyde, insulin, total bilirubin, alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, high density lipoprotein, low density lipoprotein, total cholesterol, and triglyceride were evaluated. DNA damage was also determined in the whole blood cells and the liver and renal tissue cells using the alkaline comet assay. PYC treatment significantly ameliorated the oxidative stress, lipid profile, and liver function parameters as well as DNA damage in the hyperglycemic rats. The results show that PYC treatment might improve the hyperglycemia-induced biochemical and physiological changes in diabetes.Scientific and Technological Research Council of TurkeyTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [114S919]This work was supported by The Scientific and Technological Research Council of Turkey (Grant number: 114S919)

    Effects Of Cinnamic Acid On Complications Of Diabetes

    No full text
    Background/aim: Diabetes mellitus (DM) is a major health problem worldwide. Cinnamic acid (CA) and its derivatives are synthesized in plants and increasing attention has been given to them in recent years due to the high number of beneficial health properties attributed to their consumption. The aim of this study was to investigate the effects of CA on streptozotocin-induced diabetes in Wistar albino rats. Materials and methods: DNA damage was evaluated in the blood, liver, and kidney cells of rats by the alkaline comet assay. Oxidative stress parameters such as catalase, superoxide dismutase, glutathione reductase, glutathione-S-transferase, and glutathione peroxidase activities and 8-hydroxy-2'-deoxyguanosine, total glutathione, and malondialdehyde levels; biochemical parameters including insulin, total bilirubin, and BCA protein levels; hepatic enzyme levels such as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and gamma-glutamyl transferase; and lipid profile parameters including high-density lipoprotein, low-density lipoprotein, total cholesterol, and triglyceride levels were also evaluated. Results: DM caused genotoxic damage and alterations in lipid profiles, oxidative stress parameters, and hepatic enzymes levels. CA treatment ameliorated these effects. Conclusion: It seems that CA might have a role in the prevention of the complications of diabetes.WoSScopu
    corecore