151 research outputs found

    A statistical method (cross-validation) for bone loss region detection after spaceflight.

    Get PDF
    Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes

    The 2-Pebbling Property of the Middle Graph of Fan Graphs

    Get PDF
    A pebbling move on a graph G consists of taking two pebbles off one vertex and placing one pebble on an adjacent vertex. The pebbling number of a connected graph G, denoted by f(G), is the least n such that any distribution of n pebbles on G allows one pebble to be moved to any specified but arbitrary vertex by a sequence of pebbling moves. This paper determines the pebbling numbers and the 2-pebbling property of the middle graph of fan graphs

    Use of Ultrasmall Superparamagnetic Iron Oxide Enhanced Susceptibility Weighted Imaging and Mean Vessel Density Imaging to Monitor Antiangiogenic Effects of Sorafenib on Experimental Hepatocellular Carcinoma

    Get PDF
    We investigated effectiveness of ultrasmall superparamagnetic iron oxide enhanced susceptibility weighted imaging (USPIO-enhanced SWI) and mean vessel density imaging (Q) in monitoring antiangiogenic effects of Sorafenib on orthotopic hepatocellular carcinoma (HCC). Thirty-five HCC xenografts were established. USPIO-enhanced SWI and Q were performed on a 1.5ā€‰T MR scanner at baseline, 7, 14, and 21 days after Sorafenib treatment. Intratumoral susceptibility signal intensity (ITSS) and Q were serially measured and compared between the treated (n = 15) and control groups (n = 15). Both ITSS and Q were significantly lower in the treated group at each time point (P < 0.05). Measurements in the treated group showed that ITSS persisted at 7 days (P = 0.669) and increased at 14 and 21 days (P < 0.05), while Q significantly declined at 7 days (P = 0.028) and gradually increased at 14 and 21 days. In the treated group, significant correlation was found between Q and histologic microvessel density (MVD) (r = 0.753, P < 0.001), and ITSS correlated well with MVD (r = 0.742, P = 0.002) after excluding the data from baseline. This study demonstrated that USPIO-enhanced SWI and Q could provide novel biomarkers for evaluating antiangiogenic effects of Sorafenib on HCC

    Based on Network Pharmacology and Molecular Docking to Discuss the Mechanism of Antitussive and Expectorant Action of Ruanerli

    Get PDF
    The antitussive and expectorant effects of Ruanerli and its mechanism were investigated by methods of network pharmacology. The outcomes predicted were verified by molecular docking and animal experiments. The components and targets of Ruanerli were obtained by literature investigation and TCMSP database screen. Mapping with two groups of genes related to "cough" and "sputum" from GeneCards database, the target genes of antitussive and expectorant effects of Ruanerli were obtained. GO and KEGG enrichment analysis of the target genes was performed by Metascape platform. The PPI network among the target genes was constructed through STRING data platform. Cytoscape plugin CytoHubba was used to screen the Top10 genes related to antitussive and expectorant effects of Ruanerli, and KEGG pathway enrichment was performed on the Top10 genes through Metascape data platform to predict the possible signal pathways involved in antitussive and expectorant effects of Ruanerli. Autodock Vina was used for molecular docking between the predicted Top10 gene proteins and the Top 3 active ingredients of Ruanerli. Finally, the predicted results were verified by ammonia induced cough test and phenol red excretion test. According to the analysis of multiple databases, 51 chemical components and 282 corresponding targets have been reported, eighty of them were related to the antitussive and expectorant effects of Ruanerli. The Top10 genes selected by Degree value were mainly concentrated in infection and immune-related pathways. Molecular docking test showed that the Top10 genes had strong binding activity with the Top3 chemical components (Caffeic acid, Rutin and Valeraldehyde) in PPI network. Animal experiments showed that the cough induced by ammonia was significantly inhibited when treated with Ruanerli in mice. The levels of IL-6 and IL-13 in serum were reduced and the excretion of phenol red in mice trachea was increased. PCR and WB detection showed that the mRNA levels and protein expressions of inflammatory genes IL6, IL1B, VEGFA, PTGS2 and MAPK3 were decreased, suggesting that the antitussive and expectorant effects of Ruanerli might be related to decreasing the expression of inflammatory genes and the release of inflammatory factors

    Compound heterozygosity for novel truncating variants in the LMOD3 gene as the cause of polyhydramnios in two successive fetuses

    Get PDF
    Polyhydramnios is sometimes associated with genetic defects. However, establishing an accurate diagnosis and pinpointing the precise genetic cause of polyhydramnios in any given case represents a major challenge because it is known to occur in association with over 200 different conditions. Whole exome sequencing (WES) is now a routine part of the clinical workup, particularly with diseases characterized by atypical manifestations and significant genetic heterogeneity. Here we describe the identification, by means of WES, of novel compound heterozygous truncating variants in the LMOD3 gene [i.e., c.1412delA (p.Lys471Serfs*18) and c.1283dupC (p.Gly429Trpfs*35)] in a Chinese family with two successive fetuses affected with polyhydramnios, thereby potentiating the prenatal diagnosis of nemaline myopathy (NM) in the proband. LMOD3 encodes leiomodin-3, which is localized to the pointed ends of thin filaments and acts as a catalyst of actin nucleation in skeletal and cardiac muscle. This is the first study to describe the prenatal and postnatal manifestations of LMOD3-related NM in the Chinese population. Of all the currently reported NM-causing LMOD3 nonsense and frameshifting variants, c.1412delA generates the shortest truncation at the C-terminal end of the protein, underscoring the critical role of the WH2 domain in LMOD3 structure and function. Survey of the prenatal phenotypes of all known LMOD3-related severe NM cases served to identify fetal edema as a novel presenting feature that may provide an early clue to facilitate prenatal diagnosis of the disease

    Role of Positive Selection in Functional Divergence of Mammalian Neuronal Apoptosis Inhibitor Proteins during Evolution

    Get PDF
    Neuronal apoptosis inhibitor proteins (NAIPs) are members of Nod-like receptor (NLR) protein family. Recent research demostrated that some NAIP genes were strongly associated with both innate immunity and many inflammatory diseases in humans. However, no similar phenomena have been reported in other mammals. Furthermore, some NAIP genes have undergone pseudogenization or have been lost during the evolution of some higher mammals. We therefore aimed to determine if functional divergence had occurred, and if natural selection had played an important role in the evolution of these genes. The results showed that NAIP genes have undergone pseudogenization and functional divergence, driven by positive selection. Positive selection has also influenced NAIP protein structure, resulting in further functional divergence

    Neutrophil Extracellular Traps Promote Inflammatory Responses in Psoriasis via Activating Epidermal TLR4/IL-36R Crosstalk

    Get PDF
    Epidermal infiltration of neutrophils is a hallmark of psoriasis, where their activation leads to release of neutrophil extracellular traps (NETs). The contribution of NETs to psoriasis pathogenesis has been unclear, but here we demonstrate that NETs drive inflammatory responses in skin through activation of epidermal TLR4/IL-36R crosstalk. This activation is dependent upon NETs formation and integrity, as targeting NETs with DNase I or CI-amidine in vivo improves disease in the imiquimod (IMQ)-induced psoriasis-like mouse model, decreasing IL-17A, lipocalin2 (LCN2), and IL-36G expression. Proinflammatory activity of NETs, and LCN2 induction, is dependent upon activation of TLR4/IL-36R crosstalk and MyD88/nuclear factor-kappa B (NF-ĪŗB) down-stream signaling, but independent of TLR7 or TLR9. Notably, both TLR4 inhibition and LCN2 neutralization alleviate psoriasis-like inflammation and NETs formation in both the IMQ model and K14-VEGF transgenic mice. In summary, these results outline the mechanisms for the proinflammatory activity of NETs in skin and identify NETs/TLR4 as novel therapeutic targets in psoriasis

    Genomic Analyses Reveal Mutational Signatures and Frequently Altered Genes in Esophageal Squamous Cell Carcinoma

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicatesĀ that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets
    • ā€¦
    corecore