39 research outputs found
Disordered Cellulose-based Nanostructures for Enhanced Light-scattering
Cellulose is the most abundant bio-polymer on earth. Cellulose fibres, such
as the one extracted form cotton or woodpulp, have been used by humankind for
hundreds of years to make textiles and paper. Here we show how, by engineering
light matter-interaction, we can optimise light scattering using exclusively
cellulose nanocrystals. The produced material is sustainable, biocompatible
and, when compared to ordinary microfibre-based paper, it shows enhanced
scattering strength (x4) yielding a transport mean free path as low as 3.5 um
in the visible light range. The experimental results are in a good agreement
with the theoretical predictions obtained with a diffusive model for light
propagation
Snapshot hyperspectral imaging of intracellular lasers
This work received financial support from a UK EPSRC Programme Grant (EP/P030017/1). PW was supported by the 1851 Research Fellowship from the Royal Commission. KD acknowledges support from the Australian Research Council (FL210100099). MCG acknowledges support from the Alexander von Humboldt Foundation (Humboldt professorship).Intracellular lasers are emerging as powerful biosensors for multiplexed tracking and precision sensing of cells and their microenvironment. This sensing capacity is enabled by quantifying their narrow-linewidth emission spectra, which is presently challenging to do at high speeds. In this work, we demonstrate rapid snapshot hyperspectral imaging of intracellular lasers. Using integral field mapping with a microlens array and a diffraction grating, we obtain images of the spatial and spectral intensity distribution from a single camera acquisition. We demonstrate widefield hyperspectral imaging over a 3×3 mm2 field of view and volumetric imaging over 250×250×800 µm3 volumes with a spatial resolution of 5 µm and a spectral resolution of less than 0.8 nm. We evaluate the performance and outline the challenges and strengths of snapshot methods in the context of characterising the emission from intracellular lasers. This method offers new opportunities for a diverse range of applications, including high-throughput and long-term biosensing with intracellular lasers.Preprin
Snapshot hyperspectral imaging of intracellular lasers
Intracellular lasers are emerging as powerful biosensors for multiplexed
tracking and precision sensing of cells and their microenvironment. This
sensing capacity is enabled by quantifying their narrow-linewidth emission
spectra, which is presently challenging to do at high speeds. In this work, we
demonstrate rapid snapshot hyperspectral imaging of intracellular lasers. Using
integral field mapping with a microlens array and a diffraction grating, we
obtain images of the spatial and spectral intensity distribution from a single
camera acquisition. We demonstrate widefield hyperspectral imaging over a
33 mm field of view and volumetric imaging over
250250800 m volumes with a spatial resolution of 5
m and a spectral resolution of less than 0.8 nm. We evaluate the
performance and outline the challenges and strengths of snapshot methods in the
context of characterising the emission from intracellular lasers. This method
offers new opportunities for a diverse range of applications, including
high-throughput and long-term biosensing with intracellular lasers.Comment: 15 pages, 6 figure
Biocompatible polymer and protein microspheres with inverse photonic glass structure for random micro-biolasers
This research was funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.03-2017.318 and the the EPSRC Standard Grant EP/T027258/1.The miniaturization of random lasers to the micrometer scale is challenging but fundamental for the integration of lasers with photonic integrated circuits and biological tissues. Herein, it is demonstrated that random lasers with a diameter from 30 to 160 μm can be achieved by using a simple emulsion process and selective chemical etching. These tiny random laser sources are made of either dye-doped polyvinyl alcohol (PVA) or bovine serum albumin (BSA) and they are in the form of microporous spheres with monodisperse pores of 1.28 μm in diameter. Clear lasing action is observed when the microporous spheres are optically excited with powers larger than the lasing threshold, which is 154 μJ mm−2 for a 75 μm diameter PVA microporous sphere. The lasing wavelength redshifts 10 nm when the PVA microsphere diameter increases from 34 to 160 μm. For BSA microspheres, the lasing threshold is around 55 μJ mm−2 for a 70 μm diameter sphere and 104 μJ mm−2 for a 35 μm diameter sphere. The simple fabrication process reported allows for detail studies of morphology and size, important for fundamental studies of light–matter interaction in complex media, and applications in photonic integrated circuits, photonic barcoding, and optical biosensing.Publisher PDFPeer reviewe
Snapshot hyperspectral imaging of intracellular lasers
This work received financial support from a UK EPSRC Programme Grant (EP/P030017/1). PW was supported by the 1851 Research Fellowship from the Royal Commission. KD acknowledges support from the Australian Research Council (FL210100099). MCG acknowledges support from the Alexander von Humboldt Foundation (Humboldt professorship).Intracellular lasers are emerging as powerful biosensors for multiplexed tracking and precision sensing of cells and their microenvironment. This sensing capacity is enabled by quantifying their narrow-linewidth emission spectra, which is presently challenging to do at high speeds. In this work, we demonstrate rapid snapshot hyperspectral imaging of intracellular lasers. Using integral field mapping with a microlens array and a diffraction grating, we obtain images of the spatial and spectral intensity distribution from a single camera acquisition. We demonstrate widefield hyperspectral imaging over a 3 × 3 mm2 field of view and volumetric imaging over 250 × 250 × 800 µm3 (XYZ) volumes with a lateral (XY) resolution of 5 µm, axial (Z) resolution of 10 µm, and a spectral resolution of less than 0.8 nm. We evaluate the performance and outline the challenges and strengths of snapshot methods in the context of characterizing the emission from intracellular lasers. This method offers new opportunities for a diverse range of applications, including high-throughput and long-term biosensing with intracellular lasers.Publisher PDFPeer reviewe
Red-shifted excitation and two-photon pumping of biointegrated GaInP/AlGaInP quantum well microlasers
This work received financial support from the Leverhulme Trust (RPG-2017-231), European Union’s Horizon 2020 Framework Programme (FP/2014-2020)/ERC grant agreement no. 640012 (ABLASE), EPSRC (EP/P030017/1), and the Humboldt Foundation (Alexander von Humboldt professorship). MS acknowledges funding by the Royal Society (Dorothy Hodgkin Fellowship, DH160102; grant no. RGF\R1\180070). ADF acknowledges support from European Research Council (ERC) under the European Union Horizon 2020 research and innovation program (Grant Agreement No. 819346).Biointegrated intracellular microlasers have emerged as an attractive and versatile tool in biophotonics. Different inorganic semiconductor materials have been used for the fabrication of such biocompatible microlasers, but often operate at visible wavelengths ill-suited for imaging through tissue. Here, we report on whispering gallery mode microdisk lasers made from a range of GaInP/AlGaInP multi-quantum well structures with compositions tailored to red-shifted excitation and emission. The selected semiconductor alloys show minimal toxicity and allow fabrication of lasers with stable single-mode emission in the NIR (675 – 720 nm) and sub-pJ thresholds. The microlasers operate in the first therapeutic window under direct excitation by a conventional diode laser and can also be pumped in the second therapeutic window using two-photon excitation at pulse energies compatible with standard multiphoton microscopy. Stable performance is observed under cell culturing conditions for five days without any device encapsulation. With their bio-optimized spectral characteristics, low lasing threshold and compatibility with two-photon pumping, AlGaInP-based microlasers are ideally suited for novel cell tagging and in vivo sensing applications.PreprintPreprin