61 research outputs found

    Fusion Hindrance in the Heavy Ion Reactions -- Border Between the Normal and Hindered Fusions

    Full text link
    The fusion hindrance in heavy ion collisions is studied in the framework of the two-center liquid drop model. It appears that the neck and the radial degrees of freedom might both be hampered by an inner potential barrier on their path between the contact configuration to the compound nucleus. Heavy ion reactions with and without the two kinds of fusion hindrance are classified through systematic calculations. It is found that the number of reactions without radial fusion hindrance is much smaller than that without neck fusion hindrance, and for both kinds of fusion hindrance the number of reactions without fusion hindrance at small mass-asymmetry parameter α\alpha is smaller than that at large α\alpha. In the formation of a given compound nucleus, if a reaction with αc\alpha_c is not hindered, then other reactions with α>αc\alpha > \alpha_c are also not hindered as it is well known experimentally.Comment: 14 pages, 7 figure

    Probing the momentum dependence of medium modifications of the nucleon-nucleon elastic cross sections

    Full text link
    The momentum dependence of the medium modifications on nucleon-nucleon elastic cross sections is discussed with microscopic transport theories and numerically investigated with an updated UrQMD microscopic transport model. The semi-peripheral Au+Au reaction at beam energy Eb=400AE_b=400A MeV is adopted as an example. It is found that the uncertainties of the momentum dependence on medium modifications of cross sections influence the yields of free nucleons and their collective flows as functions of their transverse momentum and rapidity. Among these observables, the elliptic flow is sensitively dependent on detailed forms of the momentum dependence and more attention should be paid. The elliptic flow is hardly influenced by the probable splitting effect of the neutron-neutron and proton-proton cross sections so that one might pin down the mass splitting effect of the mean-field level at high beam energies and high nuclear densities by exploring the elliptic flow of nucleons or light clusters.Comment: 13 pages, 6 figures, 1 tabl

    Residue cross sections of 50^{50}Ti-induced fusion reactions based on the two-step model

    Full text link
    50^{50}Ti-induced fusion reactions to synthesize superheavy elements are studied systematically with the two-step model developed recently, where fusion process is divided into approaching phase and formation phase. Furthermore, the residue cross sections for different neutron evaporation channels are evaluated with the statistical evaporation model. In general, the calculated cross sections are much smaller than that of 48^{48}Ca-induced fusion reactions, but the results are within the detection capability of experimental facilities nowadays. The maximum calculated residue cross section for producing superheavy element Z=119Z=119 is in the reaction 50^{50}Ti+247^{247}Bk in 3n3n channels with σres(3n)=0.043\sigma_{\rm res}(3n)=0.043 pb at EE^{*} = 37.0 MeV.Comment: 6 pages, 7 figure
    corecore