3,647 research outputs found

    PCN9 USING PROPENSITY SCORES TO REDUCE SELECTION BIAS IN AN OBSERVATIONAL STUDY COMPARING RASBURICASE TO ALLOPURINOL IN THE US

    Get PDF

    The RAMNI airborne lidar for cloud and aerosol research

    Get PDF
    We describe an airborne lidar for the characterization of atmospheric aerosol. The system has been set up in response to the need to monitor extended regions where the air traffic may be posed at risk by the presence of potentially harmful volcanic ash, and to study the characteristics of volcanic emissions both near the source region and when transported over large distances. The lidar provides backscatter and linear depolarization profiles at 532 nm, from which aerosol and cloud properties can be derived. The paper presents the characteristics and capabilities of the lidar system and gives examples of its airborne deployment. Observations from three flights, aimed at assessing the system capabilities in unperturbed atmospheric conditions, and at characterizing the emissions near a volcanic ash source (Mt. Etna) and transported far away from the source, are presented and discussed

    Cirrus clouds in convective outflow during the HIBISCUS campaign

    Get PDF
    International audienceLight-weight microlidar measurements were taken on-board a stratospheric balloon during the HIBISCUS 2004 campaign, held in Bauru, Brazil (22 S, 49 W). Tropical cirrus observations showed high mesoscale variability in optical and microphysical properties. The cirrus clouds were observed throughout the flight between 12 and 15 km height. It was found that the clouds were composed of different layers, characterized by a marked variability in height, thickness and optical properties. Trajectory analysis and mesoscale transport simulations clearly revealed that the clouds had formed in the outflow of a large and persistent convective region, while the observed optical properties and cloud structure variability could be linked to different residence times of convective-processed air in the upper troposphere. Mesoscale simulations were able to reproduce the supersaturation due to recent outflow, while it was necessary to consider the presence of other formation processes than convective hydration for cirrus forming in aged detrained anvils

    Morphology of the tropopause layer and lower stratosphere above a tropical cyclone : a case study on cyclone Davina (1999)

    Get PDF
    During the APE-THESEO mission in the Indian Ocean the Myasishchev Design Bureau stratospheric research aircraft M55 Geophysica performed a flight over and within the inner core region of tropical cyclone Davina. Measurements of total water, water vapour, temperature, aerosol backscattering, ozone and tracers were made and are discussed here in comparison with the averages of those quantities acquired during the campaign time frame. Temperature anomalies in the tropical tropopause layer (TTL), warmer than average in the lower part and colder than average in the upper TTL were observed. Ozone was strongly reduced compared to its average value, and thick cirrus decks were present up to the cold point, sometimes topped by a layer of very dry air. Evidence for meridional transport of trace gases in the stratosphere above the cyclone was observed and perturbed water distribution in the TTL was documented. The paper discuss possible processes of dehydration induced by the cirrus forming above the cyclone, and change in the chemical tracer and water distribution in the lower stratosphere 400–430 K due to meridional transport from the mid-latitudes and link with Davina. Moreover it compares the data prior and after the cyclone passage to discuss its actual impact on the atmospheric chemistry and thermodynamics
    corecore