4,767 research outputs found
Studies of photoabsorption by atomic hydrogen, oxygen, and nitrogen
Quantitative measurement of atomic photoionization cross sections of atomic hydrogen, oxygen, and nitroge
Solar coronal electron heating by short-wavelength dispersive shear Alfvén waves
This work was partially supported by the STFC through the Centre for Fundamental Physics (CfFP) at Rutherford Appleton Laboratory, Chilton, Didcot, UK. BE acknowledges support by the Engineering and Physical Sciences Research Council (EPSRC), UK, Grant no EP/M009386/1.The electron heating of the solar coronal plasma has remained one of the most important problems in solar physics. An explanation of the electron heating rests on the identification of the energy source and appropriate physical mechanisms via which the energy can be channelled to the electrons. Our objective here is to present an estimate for the electron heating rate in the presence of finite amplitude short-wavelength (in comparison with the ion gyroradius) dispersive shear Alfven (SWDSA) waves that propagate obliquely to the ambient magnetic field direction in the solar corona. Specifically, it is demonstrated that SWDSA waves can significantly contribute to the solar coronal electron heating via collisionless heating involving SWDSA wave-electron interactions.Publisher PDFPeer reviewe
Photoelectric yields of metals in the vacuum ultraviolet Final report
Photoelectric yields of metals in vacuum ultraviole
Design of crystal-like aperiodic solids with selective disorder--phonon coupling
Functional materials design normally focuses on structurally-ordered systems
because disorder is considered detrimental to many important physical
properties. Here we challenge this paradigm by showing that particular types of
strongly-correlated disorder can give rise to useful characteristics that are
inaccessible to ordered states. A judicious combination of low-symmetry
building unit and high-symmetry topological template leads to aperiodic
"procrystalline" solids that harbour this type of topological disorder. We
identify key classes of procrystalline states together with their
characteristic diffraction behaviour, and establish a variety of mappings onto
known and target materials. Crucially, the strongly-correlated disorder we
consider is associated with specific sets of modulation periodicities
distributed throughout the Brillouin zone. Lattice dynamical calculations
reveal selective disorder-phonon coupling to lattice vibrations characterised
by these same periodicities. The principal effect on the phonon spectrum is to
bring about dispersion in energy rather than wave-vector, as in the
poorly-understood "waterfall" effect observed in relaxor ferroelectrics. This
property of procrystalline solids suggests a mechanism by which
strongly-correlated topological disorder might allow new and useful
functionalities, including independently-optimised thermal and electronic
transport behaviour as required for high-performance thermoelectrics.Comment: 4 figure
Solar coronal heating by short-wavelength dispersive shear Alfvén waves
The electron heating of the solar coronal plasma has remained as one of the most important problems in solar physics. An explanation of the electron heating rests on the identification of the energy source and appropriate physical mechanisms via which the energy can be channelled to the electrons. Our objective here is to present an estimate for the electron heating rate in the presence of finite amplitude short-wavelength (in comparison with the ion gyroradius) dispersive shear Alfven (SWDSA) waves that propagate obliquely to the ambient magnetic field direction in the solar corona. Specifically, it is demonstrated that SWDSA waves can significantly contribute to the solar coronal electron heating via collisionless heating involving SWDSA wave-electron interactions
Anti-shielding Effect and Negative Temperature in Instantaneously Reversed Electric Fields and Left-Handed Media
The connections between the anti-shielding effect, negative absolute
temperature and superluminal light propagation in both the instantaneously
reversed electric field and the left-handed media are considered in the present
paper. The instantaneous inversion of the exterior electric field may cause the
electric dipoles into the state of negative absolute temperature and therefore
give rise to a negative effective mass term of electromagnetic field (i. e.,
the electromagnetic field propagating inside the negative-temperature medium
will acquire an imaginary rest mass), which is said to result in the potential
superluminality effect of light propagation in this anti-shielding dielectric.
In left-handed media, such phenomena may also arise.Comment: 9 pages, Late
Numerical simulation of unconstrained cyclotron resonant maser emission
When a mainly rectilinear electron beam is subject to significant magnetic compression, conservation of magnetic moment results in the formation of a horseshoe shaped velocity distribution. It has been shown that such a distribution is unstable to cyclotron emission and may be responsible for the generation of Auroral Kilometric Radiation (AKR) an intense rf emission sourced at high altitudes in the terrestrial auroral magnetosphere. PiC code simulations have been undertaken to investigate the dynamics of the cyclotron emission process in the absence of cavity boundaries with particular consideration of the spatial growth rate, spectral output and rf conversion efficiency. Computations reveal that a well-defined cyclotron emission process occurs albeit with a low spatial growth rate compared to waveguide bounded simulations. The rf output is near perpendicular to the electron beam with a slight backward-wave character reflected in the spectral output with a well defined peak at 2.68GHz, just below the relativistic electron cyclotron frequency. The corresponding rf conversion efficiency of 1.1% is comparable to waveguide bounded simulations and consistent with the predictions of kinetic theory that suggest efficient, spectrally well defined radiation emission can be obtained from an electron horseshoe distribution in the absence of radiation boundaries.Publisher PD
Simultaneous Retrieval of Aerosol and Cloud Properties During the MILAGRO Field Campaign
Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has historically been a difficult task, mainly because of a lack of appropriate measurements. Recently, passive remote sensing instruments have been developed that have the potential to retrieve both cloud and aerosol properties using polarimetric, multiple view angle, and multi spectral observations, and therefore determine DCF from aerosols above clouds. One such instrument is the Research Scanning Polarimeter (RSP), an airborne prototype of a sensor on the NASA Glory satellite, which unfortunately failed to reach orbit during its launch in March of 2011. In the spring of 2006, the RSP was deployed on an aircraft based in Veracruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. On 13 March, the RSP over flew an aerosol layer lofted above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We investigate the feasibility of retrieving aerosol properties over clouds using these data. Our approach is to first determine cloud droplet size distribution using the angular location of the cloud bow and other features in the polarized reflectance. The selected cloud was then used in a multiple scattering radiative transfer model optimization to determine the aerosol optical properties and fine tune the cloud size distribution. In this scene, we were able to retrieve aerosol optical depth, the fine mode aerosol size distribution parameters and the cloud droplet size distribution parameters to a degree of accuracy required for climate modeling. This required assumptions about the aerosol vertical distribution and the optical properties of the coarse aerosol size mode. A sensitivity study was also performed to place this study in the context of future systematic scanning polarimeter observations, which found that the aerosol complex refractive index can also be observed accurately if the aerosol optical depth is larger than roughly 0.8 at a wavelength of (0.555 m)
- …