5,482 research outputs found
Lower-hybrid waves generated by anomalous Doppler resonance in auroral plasmas
This paper describes sonic aspects of lower-hybrid wave activity in space plasmas. Lower-hybrid waves are particularly important since they can transfer energy efficiently between electrons and ions in a collisionless magnetized plasma. We consider the 'fan' or anomalous Doppler resonance instability driven by energetic electron tails and show that it is responsible for the generation of lower-hybrid waves. We also demonstrate that observations of their intensity are sufficient to drive the modulational instability.Peer reviewe
Composite Repairs To Cracked Metallic Components- Experiment and Theory
In this paper we show how the published literature reveals that the analytical solution for a composite repair to a cracked metallic plate is inconsistent with experimental data, and that the fibre bridging effect is often a second order effect. The result is that prediction of the effect of a composite repair on the structural integrity of cracked components repaired by an externally bonded composite repair is dramatically simplified
Numerical simulation of unconstrained cyclotron resonant maser emission
When a mainly rectilinear electron beam is subject to significant magnetic compression, conservation of magnetic moment results in the formation of a horseshoe shaped velocity distribution. It has been shown that such a distribution is unstable to cyclotron emission and may be responsible for the generation of Auroral Kilometric Radiation (AKR) an intense rf emission sourced at high altitudes in the terrestrial auroral magnetosphere. PiC code simulations have been undertaken to investigate the dynamics of the cyclotron emission process in the absence of cavity boundaries with particular consideration of the spatial growth rate, spectral output and rf conversion efficiency. Computations reveal that a well-defined cyclotron emission process occurs albeit with a low spatial growth rate compared to waveguide bounded simulations. The rf output is near perpendicular to the electron beam with a slight backward-wave character reflected in the spectral output with a well defined peak at 2.68GHz, just below the relativistic electron cyclotron frequency. The corresponding rf conversion efficiency of 1.1% is comparable to waveguide bounded simulations and consistent with the predictions of kinetic theory that suggest efficient, spectrally well defined radiation emission can be obtained from an electron horseshoe distribution in the absence of radiation boundaries.Publisher PD
Recommended from our members
In Situ Characterization of Electrode Processes by Photothermal Deflection Spectroscopy
Stability and transport of parallel velocity shear driven mode with negative magnetic shear
The linear and quasilinear behavior of the drift-like perturbation with a parallel velocity shear is studied in a sheared slab geometry. Full analytic studies show that when the magnetic shear has the same sign as the second derivative of the parallel velocity with respect to the radial coordinate, the linear mode may become unstable and turbulent momentum transport increases. On the other hand, when the magnetic shear has opposite sign to the second derivative of the parallel velocity, the linear mode is completely stabilized and turbulent momentum transport reduces
Life cycle analysis of steel railway bridges
This paper focuses on the growth of cracks that arise from natural corrosion in steel bridges. It is shown that these two effects of corrosion and stress, need to be simultaneously analysed. A methodology used to compute the growth of such cracks in bridge steels is presented. A better understanding of the remaining life of steel bridges would help establish an assessment procedure and guide engineers when deciding between reinforcement and replacement
Simulations of Electron Acceleration at Collisionless Shocks: The Effects of Surface Fluctuations
Energetic electrons are a common feature of interplanetary shocks and
planetary bow shocks, and they are invoked as a key component of models of
nonthermal radio emission, such as solar radio bursts. A simulation study is
carried out of electron acceleration for high Mach number, quasi-perpendicular
shocks, typical of the shocks in the solar wind. Two dimensional
self-consistent hybrid shock simulations provide the electric and magnetic
fields in which test particle electrons are followed. A range of different
shock types, shock normal angles, and injection energies are studied. When the
Mach number is low, or the simulation configuration suppresses fluctuations
along the magnetic field direction, the results agree with theory assuming
magnetic moment conserving reflection (or Fast Fermi acceleration), with
electron energy gains of a factor only 2 - 3. For high Mach number, with a
realistic simulation configuration, the shock front has a dynamic rippled
character. The corresponding electron energization is radically different:
Energy spectra display: (1) considerably higher maximum energies than Fast
Fermi acceleration; (2) a plateau, or shallow sloped region, at intermediate
energies 2 - 5 times the injection energy; (3) power law fall off with
increasing energy, for both upstream and downstream particles, with a slope
decreasing as the shock normal angle approaches perpendicular; (4) sustained
flux levels over a broader region of shock normal angle than for adiabatic
reflection. All these features are in good qualitative agreement with
observations, and show that dynamic structure in the shock surface at ion
scales produces effective scattering and can be responsible for making high
Mach number shocks effective sites for electron acceleration.Comment: 26 pages, 12 figure
Age and growth of longfinned eels (Anguilla dieffenbachii) in pastoral and forested streams in the Waikato River basin, and in two hydro-electric lakes in the North Island, New Zealand
Growth rates of New Zealand endemic longfinned eels (Anguilla dieffenbachii) from streams in pasture and indigenous forest, and from two hydroelectric lakes (Lakes Karapiro and Matahina), were estimated by otolith examination. Habitat-specific growth was further investigated with measurement of widths of annual bands in otoliths. Longfinned eels 170-1095 mm in length ranged between 4 and 60 years old (N=252). Eels in pastoral streams grew faster (mean annual length increment ±95% CL = 24 ± 3 mm to 36 ± 7 mm) than eels in streams in indigenous forest (annual length increment 12 ± 2 mm to 15 ± 3 mm). Eels from the hydro-electric lakes had growth rates (annual length increments 19 ± 4 and 19 + 7 mm) similar to eels from pastoral streams. Otoliths of most eels showed annual band widths that indicated growth in several different habitats, corresponding to growth during upstream migration, and limited movement among adult habitats. Estimated age at marketable size (220 g) ranged between 7 and 26 years. The particularly slow growth of longfinned eels in streams in indigenous forest has considerable implications for management. The fast growth rates of eels in hydro-electric lakes provides evidence for the potential of increased eel production by stocking. The probable selective production of female eels in these lakes may be nationally important to allow enhancement of breeding stocks
- âŠ