28 research outputs found

    Neural reactivation during human sleep

    Get PDF
    Sleep promotes memory consolidation: the process by which newly acquired memories are stabilised, strengthened, and integrated into long-term storage. Pioneering research in rodents has revealed that memory reactivation in sleep is a primary mechanism underpinning sleep’s beneficial effect on memory. In this review, we consider evidence for memory reactivation processes occurring in human sleep. Converging lines of research support the view that memory reactivation occurs during human sleep, and is functionally relevant for consolidation. Electrophysiology studies have shown that memory reactivation is tightly coupled to the cardinal neural oscillations of non-rapid eye movement sleep, namely slow oscillation-spindle events. In addition, functional imaging studies have found that brain regions recruited during learning become reactivated during post-learning sleep. In sum, the current evidence paints a strong case for a mechanistic role of neural reactivation in promoting memory consolidation during human sleep

    Sleep loss gives rise to intrusive thoughts

    Get PDF
    We propose a framework in which top-down inhibitory control networks are impaired by sleep deprivation, giving rise to intrusive thoughts and, consequently, emotion dysregulation. This process leads to a vicious cycle of sleeplessness, persistent unwanted thoughts, and heightened anxiety; ultimately increasing the risk of mental illness

    Sounding it out : auditory stimulation and overnight memory processing

    Get PDF
    Purpose of Review: Auditory stimulation is a technique that can enhance neural oscillations linked to overnight memory consolidation. In this review, we evaluate the impacts of auditory stimulation on the neural oscillations of sleep and associated memory processes in a variety of populations. Recent Findings: Cortical EEG recordings of slow-wave sleep (SWS) are characterised by two cardinal oscillations: slow oscillations (SOs) and sleep spindles. Auditory stimulation delivered in SWS enhances SOs and phase-coupled spindle activity in healthy children and adults, children with ADHD, adults with mild cognitive impairment, and patients with major depression. Under certain conditions, auditory stimulation bolsters the benefits of SWS for memory consolidation, although further work is required to fully understand the factors affecting stimulation-related memory gains. Recent work has turned to rapid eye movement (REM) sleep, demonstrating that auditory stimulation can be used to manipulate REM sleep theta oscillations. Summary: Auditory stimulation enhances oscillations linked to overnight memory processing and shows promise as a technique for enhancing the memory benefits of sleep

    Losing Control : Sleep Deprivation Impairs the Suppression of Unwanted Thoughts

    Get PDF
    Unwanted memories often enter conscious awareness when we confront reminders. People vary widely in their talents at suppressing such memory intrusions; however, the factors that govern suppression ability are poorly understood. We tested the hypothesis that successful memory control requires sleep. Following overnight sleep or total sleep deprivation, participants attempted to suppress intrusions of emotionally negative and neutral scenes when confronted with reminders. The sleep-deprived group experienced significantly more intrusions (unsuccessful suppressions) than the sleep group. Deficient control over intrusive thoughts had consequences: whereas in rested participants suppression reduced behavioural and psychophysiological indices of negative affect for aversive memories, it had no such salutary effect for sleep-deprived participants. Our findings raise the possibility that sleep deprivation disrupts prefrontal control over medial temporal lobe structures that support memory and emotion. These data point to an important role of sleep disturbance in maintaining and exacerbating psychiatric conditions characterised by persistent, unwanted thoughts

    Sleep Deprivation Induces Fragmented Memory Loss

    Get PDF
    Sleep deprivation increases rates of forgetting in episodic memory. Yet, whether an extended lack of sleep alters the qualitative nature of forgetting is unknown. We compared forgetting of episodic memories across intervals of overnight sleep, daytime wakefulness and overnight sleep deprivation. Item-level forgetting was amplified across daytime wakefulness and overnight sleep deprivation, as compared to sleep. Importantly, however, overnight sleep deprivation led to a further deficit in associative memory that was not observed after daytime wakefulness. These findings suggest that sleep deprivation induces fragmentation among item memories and their associations, altering the qualitative nature of episodic forgetting

    Contextual priming of word meanings is stabilized over sleep

    Get PDF
    Evidence is growing for the involvement of consolidation processes in the learning and retention of language, largely based on instances of new linguistic components (e.g., new words). Here, we assessed whether consolidation effects extend to the semantic processing of highly familiar words. The experiments were based on the word-meaning priming paradigm in which a homophone is encountered in a context that biases interpretation towards the subordinate meaning. The homophone is subsequently used in a word-association test to determine whether the priming encounter facilitates the retrieval of the primed meaning. In Experiment 1 (N = 74), we tested the resilience of priming over periods of 2 and 12 hours that were spent awake or asleep, and found that sleep periods were associated with stronger subsequent priming effects. In Experiment 2 (N = 55) we tested whether the sleep benefit could be explained in terms of a lack of retroactive interference by testing participants 24 hours after priming. Participants who had the priming encounter in the evening showed stronger priming effects after 24 hours than participants primed in the morning, suggesting that sleep makes priming resistant to interference during the following day awake. The results suggest that consolidation effects can be found even for highly familiar linguistic materials. We interpret these findings in terms of a contextual binding account in which all language perception provides a learning opportunity, with sleep and consolidation contributing to the updating of our expectations, ready for the next day

    Sleep loss disrupts the neural signature of successful learning

    Get PDF
    Sleep supports memory consolidation as well as next-day learning. The influential Active Systems account of offline consolidation suggests that sleep-associated memory processing paves the way for new learning, but empirical evidence in support of this idea is scarce. Using a within-subjects (N = 30), crossover design, we assessed behavioural and electrophysiological indices of episodic encoding after a night of sleep or total sleep deprivation in healthy adults (aged 18-25 years), and investigated whether behavioural performance was predicted by the overnight consolidation of episodic associations formed the previous day. Sleep supported memory consolidation and next-day learning, as compared to sleep deprivation. However, the magnitude of this sleep-associated consolidation benefit did not significantly predict the ability to form novel memories after sleep. Interestingly, sleep deprivation prompted a qualitative change in the neural signature of encoding: whereas 12-20 Hz beta desynchronization – an established marker of successful encoding – was observed after sleep, sleep deprivation disrupted beta desynchrony during successful learning. Taken together, these findings suggest that effective learning depends on sleep, but not necessarily sleep-associated consolidation

    Learning to live with interfering neighbours : the influence of time of learning and level of encoding on word learning

    Get PDF
    New vocabulary is consolidated offline, particularly during sleep; however, the parameters that influence consolidation remain unclear. Two experiments investigated effects of exposure level and delay between learning and sleep on adults' consolidation of novel competitors (e.g. BANARA) to existing words (e.g. BANANA). Participants made speeded semantic decisions (i.e. a forced choice: natural versus man-made) to the existing words, with the expectation that novel word learning would inhibit responses due to lexical competition. This competition was observed, particularly when assessed after sleep, for both standard and high exposure levels (10 and 20 exposures per word; Experiment 1). Using a lower exposure level (five exposures; Experiment 2), no post-sleep enhancement of competition was observed, despite evidence of consolidation when explicit knowledge of novel word memory was tested. Thus, when encoding is relatively weak, consolidation-related lexical integration is particularly compromised. There was no evidence that going to bed soon after learning is advantageous for overnight consolidation; however, there was some preliminary suggestion that longer gaps between learning and bed-onset were associated with better explicit memory of novel words one week later, but only at higher levels of exposure. These findings suggest that while lexical integration can occur overnight, weaker lexical traces may not be able to access overnight integration processes in the sleeping brain. Furthermore, the finding that longer-term explicit memory of stronger (but not weaker) traces benefit from periods of wake following learning deserves examination in future research

    Future-relevant memories are not selectively strengthened during sleep

    No full text
    Overnight consolidation processes are thought to operate in a selective manner, such that important (i.e. future-relevant) memories are strengthened ahead of irrelevant information. Using an online protocol, we sought to replicate the seminal finding that the memory benefits of sleep are enhanced when people expect a future test [Wilhelm et al., 2011]. Participants memorised verbal paired associates to a criterion of 60 percent (Experiment 1) or 40 percent correct (Experiment 2) before a 12-hour delay containing overnight sleep (sleep group) or daytime wakefulness (wake group). Critically, half of the participants were informed that they would be tested again the following day, whereas the other half were told that they would carry out a different set of tasks. We observed a robust memory benefit of overnight consolidation, with the sleep group outperforming the wake group in both experiments. However, knowledge of an upcoming test had no impact on sleep-associated consolidation in either experiment, suggesting that overnight memory processes were not enhanced for future-relevant information. These findings, together with other failed replication attempts, show that sleep does not provide selective support to memories that are deemed relevant for the future
    corecore