84 research outputs found

    Imaging correlates of molecular signatures in oligodendrogliomas.

    Get PDF
    Molecular subsets of oligodendroglioma behave in biologically distinct ways. Their locations in the brain, rates of growth, and responses to therapy differ with their genotypes. Retrospectively, we inquired whether allelic loss of chromosomal arms 1p and 19q, an early molecular event and favorable prognostic marker in oligodendrogliomas, were reflected in their appearance on magnetic resonance imaging. Loss of 1p and 19q was associated with an indistinct border on T(1) images and mixed intensity signal on T(1) and T(2). Loss of 1p and 19q was also associated with paramagnetic susceptibility effect and with calcification, a common histopathological finding in oligodendrogliomas. These data encourage prospective evaluation of molecular alterations and magnetic resonance imaging characteristics of glial neoplasms

    Leptomeningeal disease in oligodendroglial tumors: a population-based study

    Get PDF
    In this population-based study, we determined the frequency and clinical characteristics of leptomeningeal disease (LMD) developing in the context of oligodendroglial tumors (oligodendrogliomas and oligoastrocytomas). LMD occurred in only 3.9% (8/204) of oligodendroglial tumors and in patients with more recurrences [mean 2.88 vs. 1.27 in LMD and non-LMD, respectively (p = 0.001)]. In contrast to LMD from systemic solid tumors, the median survival following the diagnosis of LMD in oligodendroglial tumors was surprisingly long at 22 months (95% CI 11–33 months). Treatment with oral chemotherapy seemed as effective as more aggressive treatments (e.g. repeat RT or intrathecal chemotherapy) in these patients

    Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity

    Get PDF
    The majority of oligodendrogliomas (ODGs) exhibit combined losses of chromosomes 1p and 19q and mutations of isocitrate dehydrogenase (IDH1-R132H or IDH2-R172K). Approximately 70% of ODGs with 1p19q co-deletions harbor somatic mutations in the Capicua Transcriptional Repressor (CIC) gene on chromosome 19q13.2. Here we show that endogenous long (CIC-L) and short (CIC-S) CIC proteins are predominantly localized to the nucleus or cytoplasm, respectively. Cytoplasmic CIC-S is found in close proximity to the mitochondria. To study wild type and mutant CIC function and motivated by the paucity of 1p19q co-deleted ODG lines, we created HEK293 and HOG stable cell lines ectopically co-expressing CIC and IDH1. Non-mutant lines displayed increased clonogenicity, but cells co-expressing the mutant IDH1-R132H with either CIC-S-R201W or -R1515H showed reduced clonogenicity in an additive manner, demonstrating cooperative effects in our assays. Expression of mutant CIC-R1515H increased cellular 2-Hydroxyglutarate (2HG) levels compared to wild type CIC in IDH1-R132H background. Levels of phosphorylated ATP-citrate Lyase (ACLY) were lower in cell lines expressing mutant CIC-S proteins compared to cells expressing wild type CIC-S, supporting a cytosolic citrate metabolism-related mechanism of reduced clonogenicity in our in vitro model systems. ACLY or phospho-ACLY were similarly reduced in CIC-mutant 1p19q co-deleted oligodendroglioma patient samples

    Proceedings of the Comprehensive Oncology Network Evaluating Rare CNS Tumors (NCI-CONNECT) Oligodendroglioma Workshop.

    Get PDF
    Background: Oligodendroglioma is a rare primary central nervous system (CNS) tumor with highly variable outcome and for which therapy is usually not curative. At present, little is known regarding the pathways involved with progression of oligodendrogliomas or optimal biomarkers for stratifying risk. Developing new therapies for this rare cancer is especially challenging. To overcome these challenges, the neuro-oncology community must be particularly innovative, seeking multi-institutional and international collaborations, and establishing partnerships with patients and advocacy groups thereby ensuring that each patient enrolled in a study is as informative as possible. Methods: The mission of the National Cancer Institute\u27s NCI-CONNECT program is to address the challenges and unmet needs in rare CNS cancer research and treatment by connecting patients, health care providers, researchers, and advocacy organizations to work in partnership. On November 19, 2018, the program convened a workshop on oligodendroglioma, one of the 12 rare CNS cancers included in its initial portfolio. The purpose of this workshop was to discuss scientific progress and regulatory challenges in oligodendroglioma research and develop a call to action to advance research and treatment for this cancer. Results: The recommendations of the workshop include a multifaceted and interrelated approach covering: biology and preclinical models, data sharing and advanced molecular diagnosis and imaging; clinical trial design; and patient outreach and engagement. Conclusions: The NCI-CONNECT program is well positioned to address challenges in oligodendroglioma care and research in collaboration with other stakeholders and is developing a list of action items for future initiatives

    Loss of NOTCH2 Positively Predicts Survival in Subgroups of Human Glial Brain Tumors

    Get PDF
    The structural complexity of chromosome 1p centromeric region has been an obstacle for fine mapping of tumor suppressor genes in this area. Loss of heterozygosity (LOH) on chromosome 1p is associated with the longer survival of oligodendroglioma (OD) patients. To test the clinical relevance of 1p loss in glioblastomas (GBM) patients and identifiy the underlying tumor suppressor locus, we constructed a somatic deletion map on chromosome 1p in 26 OG and 118 GBM. Deletion hotspots at 4 microsatellite markers located at 1p36.3, 1p36.1, 1p22 and 1p11 defined 10 distinct haplotypes that were related to patient survival. We found that loss of 1p centromeric marker D1S2696 within NOTCH2 intron 12 was associated with favorable prognosis in OD (P = 0.0007) as well as in GBM (P = 0.0175), while 19q loss, concomitant with 1p LOH in OD, had no influence on GBM survival (P = 0.918). Assessment of the intra-chromosomal ratio between NOTCH2 and its 1q21 pericentric duplication N2N (N2/N2N-test) allowed delineation of a consistent centromeric breakpoint in OD that also contained a minimally lost area in GBM. OD and GBM showed distinct deletion patterns that converged to the NOTCH2 gene in both glioma subtypes. Moreover, the N2/N2N-test disclosed homozygous deletions of NOTCH2 in primary OD. The N2/N2N test distinguished OD from GBM with a specificity of 100% and a sensitivity of 97%. Combined assessment of NOTCH2 genetic markers D1S2696 and N2/N2N predicted 24-month survival with an accuracy (0.925) that is equivalent to histological classification combined with the D1S2696 status (0.954) and higher than current genetic evaluation by 1p/19q LOH (0.762). Our data propose NOTCH2 as a powerful new molecular test to detect prognostically favorable gliomas

    Oligodendroglial neoplasms with ganglioglioma-like maturation: a diagnostic pitfall

    Get PDF
    Although oligodendroglial neoplasms are traditionally considered purely glial, increasing evidence suggests that they are capable of neuronal or neurocytic differentiation. Nevertheless, ganglioglioma-like foci (GGLF) have not been previously described. Herein, we report seven examples where the primary differential diagnosis was a ganglioglioma with an oligodendroglial component. These five male and two female patients ranged in age from 29 to 63 (median 44) years at initial presentation and neuroimaging features were those of diffuse gliomas in general. At presentation, the glial component was oligodendroglioma in six and oligoastrocytoma in one; one was low-grade and six were anaplastic. A sharp demarcation from adjacent GGLF was common, although some intermingling was always present. The GGLF included enlarged dysmorphic and occasionally binucleate ganglion cells, Nissl substance, expression of neuronal antigens, GFAP-positive astrocytic elements, and low Ki-67 labeling indices. In contrast to classic ganglioglioma, however, cases lacked eosinophilic granular bodies and CD34-positive tumor cells. Scattered bizarre astrocytes were also common and one case had focal neurocytic differentiation. By FISH analysis, five cases showed 1p/19q codeletion. In the four cases with deletions and ample dysmorphic ganglion cells for analysis, the deletions were found in both components. At last follow-up, two patients suffered recurrences, one developed radiation necrosis mimicking recurrence, and one died of disease 7.5 years after initial surgery. We conclude that GGLF represents yet another form of neuronal differentiation in oligodendroglial neoplasms. Recognition of this pattern will prevent a misdiagnosis of ganglioglioma with its potential for under-treatment
    corecore