56 research outputs found

    Genome-wide gene by environment study of time spent in daylight and chronotype identifies emerging genetic architecture underlying light sensitivity

    Get PDF
    Study Objectives: Light is the primary stimulus for synchronizing the circadian clock in humans. There are very large interindividual differences in the sensitivity of the circadian clock to light. Little is currently known about the genetic basis for these interindividual differences.Methods: We performed a genome-wide gene-by-environment interaction study (GWIS) in 280 897 individuals from the UK Biobank cohort to identify genetic variants that moderate the effect of daytime light exposure on chronotype (individual time of day preference), acting as “light sensitivity” variants for the impact of daylight on the circadian system.Results: We identified a genome-wide significant SNP mapped to the ARL14EP gene (rs3847634; p < 5 × 10−8), where additional minor alleles were found to enhance the morningness effect of daytime light exposure (ÎČGxE = −.03, SE = 0.005) and were associated with increased gene ARL14EP expression in brain and retinal tissues. Gene-property analysis showed light sensitivity loci were enriched for genes in the G protein-coupled glutamate receptor signaling pathway and genes expressed in Per2+ hypothalamic neurons. Linkage disequilibrium score regression identified Bonferroni significant genetic correlations of greater light sensitivity GWIS with later chronotype and shorter sleep duration. Greater light sensitivity was nominally genetically correlated with insomnia symptoms and risk for post-traumatic stress disorder (PTSD).Conclusions: This study is the first to assess light as an important exposure in the genomics of chronotype and is a critical first step in uncovering the genetic architecture of human circadian light sensitivity and its links to sleep and mental healt

    Analysis of Salmonella enterica Serotype Paratyphi A Gene Expression in the Blood of Bacteremic Patients in Bangladesh

    Get PDF
    Salmonella enterica serotype Paratyphi A is a significant and emerging global public health problem and accounts for one fifth of all cases of enteric fever in many areas of Asia. S. Paratyphi A only infects humans, and the lack of an appropriate animal model has limited the study of S. Paratyphi A infection. In this study, we report the application of an RNA analysis method, Selective Capture of Transcribed Sequences (SCOTS), to evaluate which S. Paratyphi A genes are expressed directly in the blood of infected humans. Our results provide insight into the bacterial adaptations and modifications that S. Paratyphi A may need to survive within infected humans and suggest that similar approaches may be applied to other pathogens in infected humans and animals

    Impact of Common Diabetes Risk Variant in MTNR1B

    Full text link
    The risk of type 2 diabetes (T2D) is increased by abnormalities in sleep quantity and quality, circadian alignment, and melatonin regulation. A common genetic variant in a receptor for the circadian-regulated hormone melatonin (MTNR1B) is associated with increased fasting blood glucose and risk of T2D, but whether sleep or circadian disruption mediates this risk is unknown. We aimed to test if MTNR1B diabetes risk variant rs10830963 associates with measures of sleep or circadian physiology in intensive in-laboratory protocols (n = 58–96) or cross-sectional studies with sleep quantity and quality and timing measures from self-report (n = 4,307–10,332), actigraphy (n = 1,513), or polysomnography (n = 3,021). In the in-laboratory studies, we found a significant association with a substantially longer duration of elevated melatonin levels (41 min) and delayed circadian phase of dim-light melatonin offset (1.37 h), partially mediated through delayed offset of melatonin synthesis. Furthermore, increased T2D risk in MTNR1B risk allele carriers was more pronounced in early risers versus late risers as determined by 7 days of actigraphy. Our results provide the surprising insight that the MTNR1B risk allele influences dynamics of melatonin secretion, generating a novel hypothesis that the MTNR1B risk allele may extend the duration of endogenous melatonin production later into the morning and that early waking may magnify the diabetes risk conferred by the risk allele

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Imaging Individual Differences in the Response of the Human Suprachiasmatic Area to Light

    Get PDF
    Circadian disruption is associated with poor health outcomes, including sleep and mood disorders. The suprachiasmatic nucleus (SCN) of the anterior hypothalamus acts as the master biological clock in mammals, regulating circadian rhythms throughout the body. The clock is synchronized to the day/night cycle via retinal light exposure. The BOLD-fMRI response of the human suprachiasmatic area to light has been shown to be greater in the night than in the day, consistent with the known sensitivity of the clock to light at night. Whether the BOLD-fMRI response of the human suprachiasmatic area to light is related to a functional outcome has not been demonstrated. In a pilot study (n = 10), we investigated suprachiasmatic area activation in response to light in a 30 s block-paradigm of lights on (100 lux) and lights off (< 1 lux) using the BOLD-fMRI response, compared to each participant's melatonin suppression response to moderate indoor light (100 lux). We found a significant correlation between activation in the suprachiasmatic area in response to light in the scanner and melatonin suppression, with increased melatonin suppression being associated with increased suprachiasmatic area activation in response to the same light level. These preliminary findings are a first step toward using imaging techniques to measure individual differences in circadian light sensitivity, a measure that may have clinical relevance in understanding vulnerability in disorders that are influenced by circadian disruption

    Differential Impact of Sleep Deprivation and Circadian Timing on Reflexive Versus Inhibitory Control of Attention

    Get PDF
    In a visually stimulating environment with competing stimuli, we continually choose where to allocate attention, and what to ignore. Wake and circadian-dependent modulation of attentional control and resolution of conflict is poorly understood. Twenty-two participants (17males; 25.6 ± 5.6 years) completed ocular motor tasks throughout 40 hours of sleep deprivation under constant routine conditions. A prosaccade task required a reflexive saccade toward a stimulus (no conflict), while an antisaccade task required inhibiting a reflexive saccade to the peripheral stimulus, and looking in the mirror opposite instead (conflict resolution). Antisaccade inhibitory errors showed circadian modulation, being highest in the morning, progressively decreasing until melatonin onset, before returning to the prior morning's peak throughout the biological night. This diurnal rhythm was blunted by sleep loss (>24 hours), with inhibitory control remaining impaired across the second biological day. For prosaccade, responses slowed down during the biological night. Taken together, we provide evidence for a circadian modulation of attentional bias: the morning being biased toward reflexive responding, and the evening toward higher inhibitory control. Our data show that sleep loss and circadian timing differentially impact attention, depending on whether a response conflict is present (antisaccade) or absent (prosaccade)

    Occupant-centered approach to assessing lighting conditions in hospital patient rooms

    No full text
    Understanding how different people experience lighting is crucial to designing dynamic environments that meet user requirements for performance and well-being. Most studies performed in hospitals about occupant-centred responses to light have been conducted in workspaces and offices, with little attention given to patient rooms. Hospital lighting conditions are typically assessed using illuminance levels measured at floor or desk level; this metric only focuses on enabling occupants to move safely and perform desk-based tasks. Nurses (excluding ICU nurses) are often on the move and about 47% of their tasks are conducted in patient rooms. Patients, meanwhile, spend much of their recovery period lying on the bed, subjecting them to visual discomfort and circadian disruption (due to ceiling-mounted electric lighting and limited access to natural light). Patient rooms require more comprehensive lighting assessment procedures to ensure the lighting can accommodate the varying needs of users (patients, family members and staff).This exploratory study presents preliminary findings about various techniques and instruments for collecting environmental lighting data from the user’s perspective. The ICU simulation bay of a Brisbane tertiary hospital was the setting for this pilot study, with four lighting conditions measured from the perspectives of a 1) patient lying on a bed, and 2) a nurse standing next to the bed. Lighting metrics collected included melanopic and photopic illuminances, luminance distribution, and spectral data. Design interaction techniques (i.e., movement map) were also used to refine the instrument’s positions. The study outcomes are alternative procedures to capture naturalistic field data, which will inform the development of lighting strategies that respond to user requirements.<br/

    Impaired cognitive flexibility during sleep deprivation among carriers of the Brain Derived Neurotrophic Factor (BDNF) Val66Met allele

    No full text
    Accumulating evidence points to a genetic contribution to explain inter-individual vulnerability to sleep deprivation. A functional polymorphism in the BDNF gene, which causes a valine (Val) to methionine (Met) amino acid substitution at Codon 66, has been associated with cognitive impairment, particularly in populations with impaired frontal functioning. We hypothesised that sleep deprivation, which affects frontal function, may lead to cognitive dysfunction in Met allele carriers. To examine this, we investigated, in different BDNF genotypes, the effects of sleep deprivation on cognitive flexibility, as measured by response inhibition using the Stroop Color Naming Task. Thirty healthy, adults of European ancestry, including 12 heterozygous Met allele carriers and 18 Val/Val homozygotes, underwent 30-h of extended wakefulness under constant routine conditions. A computerised Stroop task was administered every 2 h. Error rate and reaction times increased with time awake for all individuals. Participants with the Val/Met genotype made more errors on incongruent trials after 20 h awake. While Val/Met participants also took significantly longer to respond when inhibiting a prepotent response irrespective of time awake, this was particularly evident during the biological night. Our study shows that carriers of the BDNF Met allele are more vulnerable to the impact of prolonged wakefulness and the biological night on a critical component of executive function, as measured by response inhibition on the Stroop task.</p
    • 

    corecore