16 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Structured illumination microscopy and its new developments

    No full text
    Optical microscopy allows us to observe the biological structures and processes within living cells. However, the spatial resolution of the optical microscopy is limited to about half of the wavelength by the light diffraction. Structured illumination microscopy (SIM), a type of new emerging super-resolution microscopy, doubles the spatial resolution by illuminating the specimen with a patterned light, and the sample and light source requirements of SIM are not as strict as the other super-resolution microscopy. In addition, SIM is easier to combine with the other imaging techniques to improve their imaging resolution, leading to the developments of diverse types of SIM. SIM has great potential to meet the various requirements of living cells imaging. Here, we review the recent developments of SIM and its combination with other imaging techniques

    Effect of light polariztion on pattern illumination super-resolution imaging

    No full text
    Far-field fluorescence microscopy has made great progress in the spatial resolution, limited by light diffraction, since the super-resolution imaging technology appeared. And stimulated emission depletion (STED) microscopy and structured illumination microscopy (SIM) can be grouped into one class of the super-resolution imaging technology, which use pattern illumination strategy to circumvent the diffraction limit. We simulated the images of the beads of SIM imaging, the intensity distribution of STED excitation light and depletion light in order to observe effects of the polarized light on imaging quality. Compared to fixed linear polarization, circularly polarized light is more suitable for SIM on reconstructed image. And right-handed circular polarization (CP) light is more appropriate for both the excitation and depletion light in STED system. Therefore the right-handed CP light would be the best candidate when the SIM and STED are combined into one microscope. Good understanding of the polarization will provide a reference for the patterned illumination experiment to achieve better resolution and better image quality

    Hsa_circ_0001615 downregulation inhibits esophageal cancer development through miR-142-5p/β-catenin

    No full text
    Background Recent studies have found that circular RNAs (circRNAs) play important roles in tumorigenesis. This study aimed to determine the function and potential mechanisms of hsa_circ_0001615 in esophageal cancer. Methods Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to validate the expression of hsa_circ_0001615 and miR-142-5p. Subsequently, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt, flow cytometry, clone formation, and transwell assays were used to assess the function of hsa_circ_0001615. Furthermore, qRT-PCR and Western blot analysis were used to verify cyclin D1, Bcl-2 associated X, B-cell lymphoma/leukemia gene-2, and β-catenin levels. Circular RNA Interactome was used to estimate the binding site between hsa_circ_0001615 and miR-142-5p. Additionally, dual-luciferase reporter assays were used to determine whether miR-142-5p was a direct target of hsa_circ_0001615. Pearson correlation analysis was used to explore the relationship between miR-142-5p and hsa_circ_0001615. Results In esophageal cancer, the expressions of hsa_circ_0001615 and miR-142-5p were increased and decreased, respectively. Hsa_circ_0001615 inhibition significantly reduced the proliferation, migration, and invasion but increased the apoptosis of esophageal cancer cells. Additionally, hsa_circ_0001615 knockdown increased miR-142-5p expression but decreased β-catenin expression. MiR-142-5p was a direct target of hsa_circ_0001615. Conclusion Hsa_circ_0001615 knockdown could mediate antitumor effects through the miR-142-5p/β-catenin pathway

    A Hierarchical Image Matting Model for Blood Vessel Segmentation in Fundus Images

    No full text
    corecore