16 research outputs found

    Chapitre 29 - Renforcer les capacités individuelles et institutionnelles dans la recherche en santé globale en Afrique

    Get PDF
    Introduction Les maladies Ă©mergentes et rĂ©Ă©mergentes continuent de reprĂ©senter une menace pour la santĂ© humaine et animale en Afrique. En parallĂšle, les exigences croisĂ©es de la croissance dĂ©mographique, du dĂ©veloppement Ă©conomique, de la sĂ©curitĂ© alimentaire et de la conservation de la biodiversitĂ© posent d’importants dĂ©fis Ă  la santĂ© humaine, animale et Ă©cosystĂ©mique. Ces pressions sont plus intenses en Afrique que dans la plu..

    One health, une seule santé

    Get PDF
    One Health, « Une seule santĂ© », est une stratĂ©gie mondiale visant Ă  dĂ©velopper les collaborations interdisciplinaires pour la santĂ© humaine, animale et environnementale. Elle promeut une approche intĂ©grĂ©e, systĂ©mique et unifiĂ©e de la santĂ© aux Ă©chelles locale, nationale et mondiale, afin de mieux affronter les maladies Ă©mergentes Ă  risque pandĂ©mique, mais aussi s'adapter aux impacts environnementaux prĂ©sents et futurs. Bien que ce mouvement s’étende, la littĂ©rature en français reste rare. Traduit de l’anglais, coordonnĂ© par d’éminents Ă©pidĂ©miologistes et s'appuyant sur un large panel d' approches scientifiques rarement rĂ©unies autour de la santĂ©, cet ouvrage retrace les origines du concept et prĂ©sente un contenu pratique sur les outils mĂ©thodologiques, la collecte de donnĂ©es, les techniques de surveillance et les plans d’étude. Il combine recherche et pratique en un seul volume et constitue un ouvrage de rĂ©fĂ©rence unique pour la santĂ© mondiale

    Evolution of the genetic make-up of seed nutritives tissues

    No full text
    Chez les plantes Ă  graine, l'albumen est un tissu nourricier surprenant, puisqu'il rĂ©sulte de la double fĂ©condation, qui est la fĂ©condation concomitante de l'oosphĂšre d'une part, et de la cellule mĂšre de l'albumen, la cellule centrale, d'autre part. Dans cette thĂšse, nous Ă©tudions les pressions de sĂ©lection qui dĂ©terminent l'Ă©volution de l'albumen et pourraient expliquer l'Ă©volution (1) de la double fĂ©condation, (2) d'un doublement des contributions maternelles dans la cellule centrale, (3) de la polysporie, qui consiste en la participation de plusieurs produits de mĂ©iose Ă  la formation du gamĂ©tophyte, et (4) de l'empreinte parentale, l'expression diffĂ©rentielle des allĂšles maternels et paternels.Ces innovations modifient l'hĂ©tĂ©rozygotie dans le tissu nourricier et par consĂ©quent, ont le potentiel de changer l'hĂ©tĂ©rosis de la graine. Dans cette thĂšse, nous commençons par Ă©tudier comment les changements gĂ©nĂ©tiques qui dĂ©coulent de la double fĂ©condation, du doublement des contributions maternelles, de la polysporie et de l'empreinte parentale modifient l'hĂ©tĂ©rosis, ce qui peut jouer en faveur ou en dĂ©faveur de leurs Ă©volutions. Puis, nous faisons une revue des donnĂ©es disponibles dans la littĂ©rature pour tester si ces traits sont le rĂ©sultat d'un conflit mĂąle-femelle sur l'allocation des ressources. Enfin, nous Ă©tudions de maniĂšre expĂ©rimentale les patrons de l'allocation des ressources chez le maĂŻs, pour tester si les embryons sont en compĂ©tition pour les ressources, ce qui est une des conditions nĂ©cessaires pour qu'un conflit sur l'allocation des ressources ait lieu.Nos modĂšles thĂ©oriques nous permettent de dĂ©crire un conflit mĂąle-femelle sur l'exposition des allĂšles dĂ©lĂ©tĂšres dans les tissus pour lesquels l'expression des gĂšnes est asymĂ©trique. Ce conflit n'avait jamais Ă©tĂ© dĂ©crit auparavant, et ouvre de nouvelles perspectives pour la comprĂ©hension de l'Ă©volution de l'expression gĂ©nĂ©tique. L'analyse des donnĂ©es indique que les thĂ©ories alternatives Ă  la thĂ©orie du conflit sur l'allocation des ressources ont parfois un bon pouvoir explicatif, et mĂ©ritent par consĂ©quent d'ĂȘtre d'avantage explorĂ©es. Enfin, notre Ă©tude expĂ©rimentale sur le maĂŻs montre que la compĂ©tition entre embryons est prĂ©dominante lors de l'allocation des ressources chez cette espĂšce, ce qui est concordant avec les prĂ©dictions de la thĂ©orie du conflit sur l'allocation.In seed plants, the endosperm is a surprising nutritive tissue, because it results from double fertilization, an eccentricity which results from the parallel fertilization of the egg cell on the one hand, and of the mother cell of the endosperm, the central cell, on the other hand. In this thesis, we study the selective pressures which drive the evolution of the endosperm and may explain the evolution of (1) double fertilization, (2) a doubling of maternal contributions in the central cell, (3) polyspory, the participation of several meiotic products to the gametophyte and (4) imprinting, the differential expression of maternal and paternal alleles. These innovations modify heterozygosity in the endosperm and as a consequence, have the potential to change heterosis in the seed. In this thesis, we first investigate how genetic changes that result from double fertilization, doubling of maternal contribution, polyspory and imprinting modify heterosis, which may play in favour or against the evolution of these traits. Second, we review the available data to test whether these traits are the result of a male-female conflict over resource allocation. Finally, we study experimentally patterns of resource allocation in maize to assess whether embryos compete for resources, which is a necessary condition for the conflict over resource allocation to occur. Our theoretical models allow us to describe a male-female conflict over the exposition of deleterious alleles in tissues with asymmetrical gene expression. This conflict had never been described before and opens perspectives for understanding the evolution of gene expression. We conclude from our analysis of data that theories which are alternative to the conflict theory over resource allocation may have a better explanatory power and therefore deserve to be further explored. Finally, our experimental study in maize shows that competition between embryos drives resource allocation in this species, which is consistent with predictions of the conflict over resource allocation theory

    Evolution de la composition génétique du tissu nourricier de la graine (Double fécondation, polysporie et empreinte parentale)

    No full text
    Chez les plantes Ă  graine, l'albumen est un tissu nourricier surprenant, puisqu'il rĂ©sulte de la double fĂ©condation, qui est la fĂ©condation concomitante de l'oosphĂšre d'une part, et de la cellule mĂšre de l'albumen, la cellule centrale, d'autre part. Dans cette thĂšse, nous Ă©tudions les pressions de sĂ©lection qui dĂ©terminent l'Ă©volution de l'albumen et pourraient expliquer l'Ă©volution (1) de la double fĂ©condation, (2) d'un doublement des contributions maternelles dans la cellule centrale, (3) de la polysporie, qui consiste en la participation de plusieurs produits de mĂ©iose Ă  la formation du gamĂ©tophyte, et (4) de l'empreinte parentale, l'expression diffĂ©rentielle des allĂšles maternels et paternels.Ces innovations modifient l'hĂ©tĂ©rozygotie dans le tissu nourricier et par consĂ©quent, ont le potentiel de changer l'hĂ©tĂ©rosis de la graine. Dans cette thĂšse, nous commençons par Ă©tudier comment les changements gĂ©nĂ©tiques qui dĂ©coulent de la double fĂ©condation, du doublement des contributions maternelles, de la polysporie et de l'empreinte parentale modifient l'hĂ©tĂ©rosis, ce qui peut jouer en faveur ou en dĂ©faveur de leurs Ă©volutions. Puis, nous faisons une revue des donnĂ©es disponibles dans la littĂ©rature pour tester si ces traits sont le rĂ©sultat d'un conflit mĂąle-femelle sur l'allocation des ressources. Enfin, nous Ă©tudions de maniĂšre expĂ©rimentale les patrons de l'allocation des ressources chez le maĂŻs, pour tester si les embryons sont en compĂ©tition pour les ressources, ce qui est une des conditions nĂ©cessaires pour qu'un conflit sur l'allocation des ressources ait lieu.Nos modĂšles thĂ©oriques nous permettent de dĂ©crire un conflit mĂąle-femelle sur l'exposition des allĂšles dĂ©lĂ©tĂšres dans les tissus pour lesquels l'expression des gĂšnes est asymĂ©trique. Ce conflit n'avait jamais Ă©tĂ© dĂ©crit auparavant, et ouvre de nouvelles perspectives pour la comprĂ©hension de l'Ă©volution de l'expression gĂ©nĂ©tique. L'analyse des donnĂ©es indique que les thĂ©ories alternatives Ă  la thĂ©orie du conflit sur l'allocation des ressources ont parfois un bon pouvoir explicatif, et mĂ©ritent par consĂ©quent d'ĂȘtre d'avantage explorĂ©es. Enfin, notre Ă©tude expĂ©rimentale sur le maĂŻs montre que la compĂ©tition entre embryons est prĂ©dominante lors de l'allocation des ressources chez cette espĂšce, ce qui est concordant avec les prĂ©dictions de la thĂ©orie du conflit sur l'allocation.In seed plants, the endosperm is a surprising nutritive tissue, because it results from double fertilization, an eccentricity which results from the parallel fertilization of the egg cell on the one hand, and of the mother cell of the endosperm, the central cell, on the other hand. In this thesis, we study the selective pressures which drive the evolution of the endosperm and may explain the evolution of (1) double fertilization, (2) a doubling of maternal contributions in the central cell, (3) polyspory, the participation of several meiotic products to the gametophyte and (4) imprinting, the differential expression of maternal and paternal alleles. These innovations modify heterozygosity in the endosperm and as a consequence, have the potential to change heterosis in the seed. In this thesis, we first investigate how genetic changes that result from double fertilization, doubling of maternal contribution, polyspory and imprinting modify heterosis, which may play in favour or against the evolution of these traits. Second, we review the available data to test whether these traits are the result of a male-female conflict over resource allocation. Finally, we study experimentally patterns of resource allocation in maize to assess whether embryos compete for resources, which is a necessary condition for the conflict over resource allocation to occur. Our theoretical models allow us to describe a male-female conflict over the exposition of deleterious alleles in tissues with asymmetrical gene expression. This conflict had never been described before and opens perspectives for understanding the evolution of gene expression. We conclude from our analysis of data that theories which are alternative to the conflict theory over resource allocation may have a better explanatory power and therefore deserve to be further explored. Finally, our experimental study in maize shows that competition between embryos drives resource allocation in this species, which is consistent with predictions of the conflict over resource allocation theory.MONTPELLIER-BU Sciences (341722106) / SudocSudocFranceF

    Ploidy and the Evolution of Endosperm of Flowering Plants

    No full text
    In angiosperms, spermatozoa go by pair in each pollen grain and fertilize, in addition to the egg cell, one of its sister cells, called the central cell. This “double fertilization” leads to the embryo on the one hand and to its nutritive tissue, the endosperm, on the other hand. In addition, in most flowering plants, the endosperm is triploid because of a doubled maternal genetic contribution in the central cell. Most of the hypotheses trying to explain these eccentricities rest on the assumption of a male/female conflict over seed resource allocation. We investigate an alternative hypothesis on the basis of the masking of deleterious alleles. Using analytical methods, we show that a doubled maternal contribution and double fertilization tend to be favored in a wide range of conditions when deleterious mutations alter the function of the endosperm. Furthermore, we show that these conditions vary depending on whether these traits are under male or female control, which allows us to describe a new type of male/female conflict

    Enhancer Runaway and the Evolution of Diploid Gene Expression

    No full text
    <div><p>Evidence is mounting that the evolution of gene expression plays a major role in adaptation and speciation. Understanding the evolution of gene regulatory regions is indeed an essential step in linking genotypes and phenotypes and in understanding the molecular mechanisms underlying evolutionary change. The common view is that expression traits (protein folding, expression timing, tissue localization and concentration) are under natural selection at the individual level. Here, we use a theoretical approach to show that, in addition, in diploid organisms, enhancer strength (i.e., the ability of enhancers to activate transcription) may increase in a runaway process due to competition for expression between homologous enhancer alleles. These alleles may be viewed as self-promoting genetic elements, as they spread without conferring a benefit at the individual level. They gain a selective advantage by getting associated to better genetic backgrounds: deleterious mutations are more efficiently purged when linked to stronger enhancers. This process, which has been entirely overlooked so far, may help understand the observed overrepresentation of cis-acting regulatory changes in between-species phenotypic differences, and sheds a new light on investigating the contribution of gene expression evolution to adaptation.</p></div

    Schematic representation of protein expression and fitness of gene heterozygotes.

    No full text
    <p>Here, the strengths of two enhancer alleles are represented by their ability to attract transcription factors. Four genotypes are represented: weaker enhancer homozygote (a), stronger enhancer homozygote (d) and enhancer locus heterozygotes (b) and (c). In enhancer locus heterozygotes, the stronger enhancer is either associated with the deleterious gene allele (b) or with the viable gene allele (c). Corresponding fitnesses are indicated. Note that we consider here a case where the total amount of proteins produced is constant.</p

    Comparative rate of enhancer strength escalation in models with or without self-fertilization.

    No full text
    <p>Axes and simulation methods are the same than for <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005665#pgen.1005665.g004" target="_blank">Fig 4</a>. Selfing rate <i>p</i><sub><i>s</i></sub> is 0, 0.2 and 0.7 on blue, red and green curves, respectively. In all three cases, enhancer strength escalation is faster with larger mutational variance σ<sub>E</sub><sup>2</sup> on the enhancer locus. Self-fertilization slows down the ER process.</p

    Comparative doubling times of enhancer strength escalation in models considering different selection pressures acting on overall gene expression.

    No full text
    <p>Y-axis indicates doubling times of enhancer strength (the expected number of generations needed to double the initial enhancer strength) according to the mutation size standard deviation on enhancers (x-axis). Because in all models presented, enhancer strength increases open-endedly in average, this doubling time measures the rate of escalation (see <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005665#sec007" target="_blank">methods</a>). The mutation size standard deviation on enhancer strength (<i>σ</i><sub><i>E</i></sub>) is a measure of the magnitude of mutational input (see <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005665#sec007" target="_blank">methods</a>). In model 2 (plain lines), overall expression of one gene is involved in a dosage relationship with the overall expression of another gene. Overall expression is determined by one enhancer locus per gene, and any departure from optimal dosage is costly. In model 3 (dashed lines), the absolute amount of protein produced is under stabilizing selection, but expression level is influenced by both an enhancer and a TF locus. In both models, stabilizing selection intensity is scaled by the intensity of selection at the gene locus (see <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005665#sec007" target="_blank">methods</a>). Deceleration of ER process due to stabilizing selection is illustrated for <i>Îł</i> values equal to 0 (in red), 1 (in green), 5 (in blue) and 10 (in purple). Doubling times were obtained using stochastic simulations (see <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005665#sec007" target="_blank">methods</a>).</p
    corecore