27 research outputs found

    Performance of plain and slag-blended cements and mortars exposed to combined chloride-sulphate solution

    Get PDF
    The durability of reinforced concrete structures exposed to aggressive environments remains a challenge to both researchers and the construction industry. This study investigates the hydration, mechanical properties and durability characteristics of ground granulated blast-furnace slag (GGBS) - blended cements and mortars exposed to a combined sodium chloride - sulphate environment, at temperatures of 20°C and 38°C. The conditions were chosen so as to assess the performance of slag blends under typical temperate and warm tropical marine climatic conditions. Slags, having CaO/SiO2 ratios of 1.05 and 0.94, were blended with CEM I 52.5R at 30% replacement level to study the influence of slag composition and temperature. Parallel control tests were carried out with CEM I 42.5R. Pastes and mortar samples were cast using 0.5 water to binder ratio, pre-cured for 7 days in water before exposure. Flexural strengths were determined once the samples were 7, 28 or 90 days old. Hydration was followed using x-ray diffraction (XRD), thermal analysis, and calorimetry. Also, sorptivity, gas permeability and chloride diffusion tests were carried out on mortar samples to measure transport and durability characteristics. The results show improved mechanical and transport properties for slag blended cements exposed to environments rich in sodium chloride and sulphate

    Genome-Wide SNP Markers Based on SLAF-Seq Uncover Breeding Traces in Rapeseed (Brassica napus L.)

    No full text
    Single Nucleotide Polymorphisms (SNPs) are the most abundant and richest form of genomic polymorphism, and hence make highly favorable markers for genetic map construction and genome-wide association studies. In this study, a total of 300 rapeseed accessions (278 representative of Chinese germplasm, plus 22 outgroup accessions of different origins and ecotypes) were collected and sequenced using Specific-Locus Amplified Fragment Sequencing (SLAF-seq) technology, obtaining 660.25M reads with an average sequencing depth of 6.27 × and a mean Q30 of 85.96%. Based on the 238,711 polymorphic SLAF tags a total of 1,197,282 SNPs were discovered, and a subset of 201,817 SNPs with minor allele frequency >0.05 and integrity >0.8 were selected. Of these, 30,877 were designated SNP “hotspots,” and 41 SNP-rich genomic regions could be delineated, with 100 genes associated with plant resistance, vernalization response, and signal transduction detected in these regions. Subsequent analysis of genetic diversity, linkage disequilibrium (LD), and population structure in the 300 accessions was carried out based on the 201,817 SNPs. Nine subpopulations were observed based on the population structure analysis. Hierarchical clustering and principal component analysis divided the 300 varieties roughly in accordance with their ecotype origins. However, spring-type varieties were intermingled with semi-winter type varieties, indicating frequent hybridization between spring and semi-winter ecotypes in China. In addition, LD decay across the whole genome averaged 299 kb when r2 = 0.1, but the LD decay in the A genome (43 kb) was much shorter than in the C genome (1,455 kb), supporting the targeted introgression of the A genome from progenitor species B. rapa into Chinese rapeseed. This study also lays the foundation for genetic analysis of important agronomic traits using this rapeseed population
    corecore