24,894 research outputs found

    Annihilation Type Radiative Decays of BB Meson in Perturbative QCD Approach

    Full text link
    With the perturbative QCD approach based on kTk_T factorization, we study the pure annihilation type radiative decays B0→ϕγB^0 \to \phi\gamma and B0→J/ψγB^0\to J/\psi \gamma. We find that the branching ratio of B0→ϕγB^0 \to \phi\gamma is (2.7−0.6−0.6+0.3+1.2)×10−11(2.7^{+0.3+1.2}_{-0.6-0.6})\times10^{-11}, which is too small to be measured in the current BB factories of BaBar and Belle. The branching ratio of B0→J/ψγB^0\to J/\psi \gamma is (4.5−0.5−0.6+0.6+0.7)×10−7({4.5^{+0.6+0.7}_{-0.5-0.6}})\times10^{-7}, which is just at the corner of being observable in the BB factories. A larger branching ratio BR(Bs0→J/ψγ)≃5×10−6BR(B_s^0 \to J/\psi \gamma) \simeq 5 \times 10^{-6} is also predicted. These decay modes will help us testing the standard model and searching for new physics signals.Comment: 4 pages, revtex, with 1 eps figur

    An integrated approach to global synchronization and state estimation for nonlinear singularly perturbed complex networks

    Get PDF
    This paper aims to establish a unified framework to handle both the exponential synchronization and state estimation problems for a class of nonlinear singularly perturbed complex networks (SPCNs). Each node in the SPCN comprises both 'slow' and 'fast' dynamics that reflects the singular perturbation behavior. General sector-like nonlinear function is employed to describe the nonlinearities existing in the network. All nodes in the SPCN have the same structures and properties. By utilizing a novel Lyapunov functional and the Kronecker product, it is shown that the addressed SPCN is synchronized if certain matrix inequalities are feasible. The state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that dynamics (both slow and fast) of the estimation error is guaranteed to be globally asymptotically stable. Again, a matrix inequality approach is developed for the state estimation problem. Two numerical examples are presented to verify the effectiveness and merits of the proposed synchronization scheme and state estimation formulation. It is worth mentioning that our main results are still valid even if the slow subsystems within the network are unstable

    Discontinuous Finite Element Methods for Interface Problems: Robust A Priori and A Posteriori Error Estimates

    Get PDF
    For elliptic interface problems in two and three dimensions, this paper studies a priori and residual-based a posteriori error estimations for the Crouzeix–Raviart nonconforming and the discontinuous Galerkin finite element approximations. It is shown that both the a priori and the a posteriori error estimates are robust with respect to the diffusion coefficient, i.e., constants in the error bounds are independent of the jump of the diffusion coefficient. The a priori estimates are also optimal with respect to local regularity of the solution. Moreover, we obtained these estimates with no assumption on the distribution of the diffusion coefficient

    A 2D systems approach to iterative learning control for discrete linear processes with zero Markov parameters

    No full text
    In this paper a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous con-sideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using Linear Matrix Inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable
    • …
    corecore