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DISCONTINUOUS FINITE ELEMENT METHODS FOR
INTERFACE PROBLEMS: ROBUST A PRIORI AND A POSTERIORI

ERROR ESTIMATES∗

ZHIQIANG CAI† , CUIYU HE† , AND SHUN ZHANG‡

Abstract. For elliptic interface problems in two and three dimensions, this paper studies a
priori and residual-based a posteriori error estimations for the Crouzeix–Raviart nonconforming and
the discontinuous Galerkin finite element approximations. It is shown that both the a priori and the
a posteriori error estimates are robust with respect to the diffusion coefficient, i.e., constants in the
error bounds are independent of the jump of the diffusion coefficient. The a priori estimates are also
optimal with respect to local regularity of the solution. Moreover, we obtained these estimates with
no assumption on the distribution of the diffusion coefficient.
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1. Introduction. As a prototype of problems with interface singularities, this
paper studies a priori and a posteriori error estimations of various finite element meth-
ods for the following interface problem (i.e., the diffusion problem with discontinuous
coefficients):

(1.1) −∇ · (α(x)∇u) = f in Ω

with homogeneous Dirichlet boundary conditions (for simplicity)

(1.2) u = 0 on ∂Ω,

where Ω is a bounded polygonal domain in Rd with d = 2 or 3; f ∈ L2(Ω) is a given
function; and diffusion coefficient α(x) is positive and piecewise constant with possible
large jumps across subdomain boundaries (interfaces):

α(x) = αi > 0 in Ωi for i = 1, . . . , n.

Here, {Ωi}ni=1 is a partition of the domain Ω with Ωi being an open polygonal domain.
The variational formulation for the interface problem in (1.1) and (1.2) is to find
u ∈ H1

0 (Ω) such that

(1.3) (α∇u, ∇v) = (f, v) ∀ v ∈ H1
0 (Ω).
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It is well known that the solution u of problem (1.3) belongs to H1+s(Ω) with possibly
very small s > 0 (see, e.g., [22]).

Let T = {K} be a regular triangulation of the domain Ω (see, e.g., [13]). Denote
by hK the diameter of the element K. Assume that interfaces {∂Ωi ∩ ∂Ωj : i, j =
1, . . . , n} do not cut through any element K ∈ T . For any element K ∈ T , denote
by Pk(K) the space of polynomials on K with total degree less than or equal to k.
Denote the continuous finite element space on the triangulation T by

Vk = {v ∈ H1
0 (Ω) : v|K ∈ Pk(K) ∀K ∈ T }.

Then the conforming finite element method is to find uck ∈ Vk such that

(1.4) (α∇uck, ∇v) = (f, v) ∀ v ∈ Vk.

1.1. A priori error estimate. The following a priori error estimate was estab-
lished in [5]:

(1.5) ‖α1/2∇(u−uck)‖0,Ω = inf
v∈Vk

‖α1/2∇(u−v)‖0,Ω ≤ C
(∑
K∈T

h2sαK‖∇u‖2s,K

)1/2

,

where αK = α|K is the restriction of the α on element K. Here and thereafter, we use
C with or without subscripts to denote a generic positive constant that is independent
of the mesh parameter and the jump of α(x) but that may depend on the domain Ω.

The estimate in (1.5) is robust with respect to α, i.e., the constant C in (1.5)
is independent of α. However, estimate (1.5) is not optimal with respect to the
local regularity since s is a global exponent. This kind of a priori error estimate is
not satisfactory. For example, for the well-known Kellogg’s example of the interface
problem in [22, 9], the solution has low regularity at the elements attached to the
origin but is very smooth away from the origin.

By Sobolev’s embedding theorem (see, e.g., [20]), H1+s(Ω), with s > 0 for two
dimensions and s > 1/2 for three dimensions, is embedded in C0(Ω) and, hence,
the nodal interpolation of the solution u is well-defined. In [16], it is proved that if
v ∈ H1+s(K) with s > 0 in two dimensions, then for 0 < t ≤ s, the following estimate
holds for the linear nodal interpolation IK :

(1.6) ‖v − IKv‖0,K ≤ Ch1+t|∇v|t,K .

Under the local regularity assumption that the restriction of the solution u of problem
(1.5) on element K belongs to H1+sK (K) for all K ∈ T , (1.6) implies the following a
priori error estimate (see section 3.3 of [27] in two dimensions):

(1.7) ‖α1/2∇(u− uck)‖0,Ω ≤ C
(∑
K∈T

h
2 min{k,sK}
K αK |∇u|2sK ,K

)1/2

.

This estimate is not only robust with respect to the jump of α but also optimal with
respect to the local regularity.

In three dimensions, in the case that s > 1/2, using the technique of [16], one may
prove the validity of estimate (1.6) that, in turn, implies the a priori error estimate
in (1.7). When s is only in (0, 1/2] in three dimensions, to obtain estimate (1.7) (see
[12]), we need an additional assumption on the distribution of the coefficient α(x) (see
[28] for details).
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Quasi-monotonicity assumption. Assume that any two different subdomains
Ω̄i and Ω̄j, which share at least one point, have a connected path passing from Ω̄i to
Ω̄j through adjacent subdomains such that the diffusion coefficient α(x) is monotone
along this path.

This assumption is very restrictive but is needed for a priori and a posteriori
error estimations to be robust with respect to the diffusion coefficient α(x) (see, e.g.,
[5, 8, 9, 10, 11, 28]). It also appeared in the convergence analysis of the domain
decomposition method in [15].

The a priori error estimate using local regularity in (1.7) is the base for adaptive
finite element methods to achieve equal discretization error distribution (see [26] for
examples in both one and two dimensions). The first purpose of this paper is to derive
a priori estimates of this type for the Crouzeix–Raviart (CR) nonconforming and the
discontinuous Galerkin finite element approximations, when the solution of (1.3) has
low global regularity, i.e., s ∈ (0, 1/2] in three dimensions, and the distribution of the
coefficient does not satisfy the quasi-monotonicity assumption (QMA).

Derivation of such estimates for the nonconforming and the discontinuous ele-
ments is nontrivial. To do so, we first prove a robust Céa’s lemma type of result for
the CR nonconforming and the discontinuous Galerkin finite element approximations.
Besides making use of both analytical approaches developed recently in [8] and [21],
respectively, we also need to establish new trace inequalities (see Lemmas 2.3 and
2.4), which play an important role in the a posteriori error estimates as well.

Standard a priori error estimates for the nonconforming and the discontinuous
elements (see, e.g., [3, 30]) require the underlying problem to be sufficiently smooth,
i.e., at least piecewise H3/2+ε, so that there is an error equation. For problems
with low regularity, by carefully defining duality pairs on element interfaces, in [8]
we developed a nonstandard variational formulation that, in turn, leads to an error
equation and then an a priori error estimate. The estimate in [8] is robust with
respect to α without the QMA but not locally optimal due to the use of a continuous
approximation in our analysis. An alternative approach was developed by Gudi [21]
for the Poisson equation. His approach compares the discontinuous solution with the
continuous solution and makes use of the efficiency bound of the a posteriori error
estimation. Moreover, it is applicable to problems with low regularity. Its application
to interface problems with the Oswald interpolation analyzed in [8] would yield an a
priori error estimate that is robust under the QMA.

1.2. A posteriori error estimate. For the conforming finite element approx-
imation in (1.4), by using the diffusion coefficient to properly weight the element
residual and the edge flux jump, Bernardi and Verfürth in [5] (see also [28]) showed
that the resulting residual based error estimator is locally efficient and globally reli-
able with the efficiency constant independent of the jump of the diffusion coefficient.
Moreover, under the QMA, the reliability constant is proved to be uniform with re-
spect to the jump as well. Since then, various robust a posteriori error estimators
have been constructed, analyzed, and implemented (see, e.g., [24, 9, 31] for the con-
forming elements, [1, 10] for the nonconforming elements, [2, 23, 10, 14] for the mixed
elements, and [8, 18, 19] for the discontinuous elements). The robustness for those
estimators was theoretically established again under the QMA. However, numerical
results by many researchers including ours strongly suggest that those estimators are
robust even when the diffusion coefficients are not quasi-monotone.

The second purpose of this paper is to theoretically establish robust reliabil-
ity bounds of the residual estimators without the QMA for the nonconforming and
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the discontinuous elements. The QMA is imposed to guarantee the desired approx-
imation and stability properties of the Clément type interpolation (see [5] for de-
tails), which is one of the key steps in obtaining the reliability bound of the residual
based estimator. For the conforming elements, this type of interpolation is defined
on vertex patches through averaging and, hence, the QMA is required. For the non-
conforming and the discontinuous elements, one may construct a modified Clément
interpolation satisfying the desired properties without the QMA (see [7]). Due to
the lack of the error equation, the reliability bound for discontinuous approxima-
tions is commonly analyzed through the Helmholtz decomposition of the true er-
ror. Application of the Helmholtz decomposition, in turn, leads to establishment of
the reliability bound for conforming approximations and, hence, the requirement of
the QMA.

In [7], we introduced a new and direct analysis that does not involve the Helmholtz
decomposition for two-dimensional nonconforming elements. In particular, we derived
an L2 representation of the error in the energy norm that naturally contains three
terms: the element residual, the face flux jump, and the face solution jump. Due to
a technical difficulty, the solution jump was modified at elements where the QMA is
not satisfied. The modified estimator was proved to be robustly reliable without the
QMA. Unfortunately, robustness of local efficiency of the modified indicator requires
the QMA.

With the help of our newly developed trace inequality (Lemmas 2.3 and 2.4),
we are able to bound the solution jump without any modification. Moreover, in-
stead of using the nonconforming Clément type interpolation as in [7], we use the
standard nonconforming interpolation and the piecewise constant projection for the
respective nonconforming and discontinuous elements, which fully takes advantage
of the local feature of the element itself. Both the approximations are element-
wisely defined. Thus, without the QMA, we are able to prove the robustness in
both two and three dimensions for the CR nonconforming and the discontinuous
elements.

The paper is organized as follows. Section 2 introduces Sobolev spaces of frac-
tional order and establishes some new trace inequalities that play an important role in
both the a priori and a posteriori error estimates. The a priori and a posteriori error
estimates for the nonconforming and discontinuous Galerkin finite element methods
are derived in sections 3 and 4, respectively.

2. Sobolev space and preliminaries. This section introduces Sobolev space
of fractional order and establishes new trace inequalities.

2.1. Sobolev space of fractional order. Let Ω be a nonempty open set in
Rd. We use the standard notation and definitions for the Sobolev spaces Hm(Ω)d and
Hm(∂Ω)d with integer m ≥ 0; the standard associated inner products are denoted
by (·, ·)m,Ω and (·, ·)m,∂Ω, and their respective norms (seminorms) are denoted by
‖ · ‖m,Ω and ‖ · ‖m,∂Ω (| · |m,Ω and | · |m,∂Ω). We suppress the superscript d because
their dependence on dimension will be clear by context. We also omit the subscript
Ω from the inner product and norm designations when there is no risk of confusion.
For m = 0, Hm(Ω)d coincides with L2(Ω)d. In this case, the inner product and norm
will be denoted by ‖ · ‖ and (·, ·), respectively.

For t ∈ (0, 1), the seminorm

|v|t,Ω =
(∫

Ω

∫
Ω

|v(x)− v(y)|2

|x− y|d+2t dxdy

)1/2

, 0 < t < 1,
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is used to define Sobolev spaces of fractional order. For integer m ≥ 0, Sobolev space
Hs(Ω) with s = m+ t is equipped with the norm

(2.1) ‖v‖s,Ω =

 ∑
|α|≤m

∫
Ω
|∂αv|2dx+ |v|2s,Ω

1/2

,

where |v|s,Ω is a seminorm defined by

(2.2) |v|s,Ω =

 ∑
|α|=m

|∂αv|2t,Ω

1/2

.

Sobolev spaces with negative indices are defined through duality.
Another way to define Sobolev spaces of fractional order is by the method of

interpolation. To this end, let B1 ⊂ B0 be Banach spaces. For t > 0 and u ∈ B0,
define the K-functional by

K(t, u) = inf
v∈B1

(‖u− v‖2B0
+ t2‖v‖2B1

)1/2.

For 0 < θ < 1, the interpolation space Bθ = [B0, B1]θ is a Banach space equipped
with the norm

(2.3) ‖u‖[B0,B1]θ = Nθ

(∫ ∞
0
|t−θK(t, u)|2 dt

t

)1/2
,

where Nθ > 0 is a normalization factor.
For any real numbers s0 ≤ s1, let s = m+ t = (1− θ)s0 + θs1 with θ ∈ (0, 1). It

was shown (see Theorem B.8 in [25]) that

[Hs0(Ω), Hs1(Ω)]θ = Hs(Ω)

and that the norms defined in (2.1) and (2.3) are identical if the normalization factor is
chosen to be Nθ =

√
2 sin (πθ)

π . Moreover, for v ∈ Hs1(Ω), it was shown (see Theorem
B.1 in [25]) that

(2.4) ‖v‖s,Ω ≤

√
sin(πθ)
πθ(1− θ) ‖v‖

1−θ
s0,Ω ‖v‖

θ
s1,Ω.

Lemma 2.1. Let s > 0, t ∈ [0, s), and K ∈ T . Assume that v is a given function
in Hs(K). For any given ε > 0, there exists a small δ ∈ (0, s − t), depending on v,
such that

(2.5) ‖v‖t+δ,K ≤ (1 + ε) ‖v‖t,K .

Proof. Obviously, (2.5) holds for v = 0. Assume that v 6= 0. For any δ ∈ (0, s−t),
we have

Ht+δ(K) = [Ht(K), Hs(K)]θ with θ = δ

s− t
,

which, together with (2.4), implies

‖v‖t+δ,K ≤

√
sin(πθ)
πθ(1− θ) ‖v‖

1−θ
t,K ‖v‖

θ
s,K =

√
sin(πθ)
πθ(1− θ)

(
‖v‖s,K
‖v‖t,K

)θ
‖v‖t,K .
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Now, (2.5) is a consequence of the fact that

lim
θ→0

√
sin(πθ)
πθ(1− θ)

(
‖v‖s,K
‖v‖t,K

)θ
= 1.

This completes the proof of the lemma.
Remark 2.2. Since ‖v‖t,K ≤ ‖v‖t+δ,K , Lemma 2.1 implies that

lim
δ→0+

‖v‖t+δ = ‖v‖t.

Note that this continuity is not uniform with respect to v.

2.2. Trace inequalities. For any K ∈ T and some α > 0, let

V 1+α(K) = {v ∈ H1+α(K) : ∆ v ∈ L2(K)}.

Lemma 2.3. Let F be a face of K ∈ T and let s > 0. Assume that v is a given
function in V 1+s(K). Then there exists a small 0 < δ < min{s, 1/2}, depending on
v, and a positive constant C independent of δ such that

(2.6) ‖∇v · n‖δ−1/2,F ≤ C (‖∇v‖0,K + hK‖∆v‖0,K) .

Proof. For any v ∈ V 1+s(K), it was shown in [4, 8] that for all 0 < δ <
min{s, 1/2}, we have

‖∇v · n‖δ−1/2,F ≤ C
(
‖∇v‖δ,K + h1−δ

K ‖∆v‖0,K
)
,

which, together with Lemma 2.1 with t = 0 and the fact that h−δK ≤ 2 for sufficiently
small δ, implies the validity of (2.6). This completes the proof of the lemma.

Lemma 2.4. Let F be a face of K ∈ T , nF the unit vector normal to F , and
s > 0. Assume that v is a given function in V 1+s(K). For any wh ∈ Pk(K), we have∫

F

(∇v · nF ) wh ds ≤ C h−1/2
F ‖wh‖0,F (‖∇v‖0,K + hK‖∆v‖0,K)

≤ C h−1
K ‖wh‖0,K (‖∇v‖0,K + hK‖∆v‖0,K) .(2.7)

Proof. The second inequality in (2.7) follows from the inverse inequality. To show
the validity of the first inequality in (2.7), as discussed in [8],

∫
F

(∇v · nF ) wh ds may
be viewed as a duality pairing between Hδ−1/2(F ) and H1/2−δ(F ) for all 0 < δ <
min{s, 1/2}. It follows from the definition of the dual norm, the inverse inequality,
and (2.6) for sufficiently small δ that∫

F

(∇v · nF ) wh ds ≤ ‖∇v · n‖δ−1/2,F ‖wh‖1/2−δ,F

≤ C hδ−1/2
K ‖wh‖0,F (‖∇v‖0,K + hK‖∆v‖0,K)

≤ C h−1/2
K ‖wh‖0,F (‖∇v‖0,K + hK‖∆v‖0,K) .

This completes the proof of the first inequality in (2.7) and, hence, the lemma.
Remark 2.5. Generalizations of the above results to τ ∈ {τ ∈ Hα(K)d : ∇ · τ ∈

L2(K)} are obvious.
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3. Nonconforming finite element method. This section establishes the a
priori and the residual based a posteriori error estimates for the CR nonconforming
finite element approximation. To this end, let N be the set of vertices of the triangu-
lation T and ND be the collection of the vertices on the Dirichlet boundary. Denote
by EK the set of faces of element K ∈ T . In this paper, face means edge/face in
two/three dimensions. Denote the set of all faces of the triangulation T by

E := E
I
∪ E

D
,

where E
I
and E

D
are the respective sets of all interior and boundary faces. For each

F ∈ E , denote by hF the diameter of the face F and by nF a unit vector normal to
F . For each interior face F ∈ E

I
, let K−F and K+

F be the two elements sharing the
common face F such that the unit outward normal vector of K−F coincides with nF .
When F ∈ E

D
, nF is the unit outward normal vector of ∂Ω and denote the element

by K−F . For any F ∈ E , denote by v|−F and v|+F , respectively, the traces of a function
v over F . Define jumps over faces by

[[v]]F :=
{

v|−F − v|
+
F , F ∈ EI ,

v|−F , F ∈ E
D
.

Denote the CR linear nonconforming finite element space by

V cr =
{
v ∈ L2(Ω) : v|K ∈ P1(K) ∀K ∈ T ,

∫
F

[[v]]ds = 0 ∀F ∈ E
}
.

Then the nonconforming finite element method is to find ucr ∈ V cr such that

(3.1) (α∇hucr, ∇hv) = (f, v) ∀ v ∈ V cr,

where ∇h is the discrete gradient operator defined elementwisely.

3.1. A priori error estimate. Let

W 1,1(T ) = {v ∈ L2(Ω) : v|K ∈W 1,1(K) ∀K ∈ T }

and W (T ) =
{
v ∈W 1,1(T ) :

∫
F

[[v]]ds = 0 ∀F ∈ E
}
.

Denote by θF (x) the nodal basis function of V cr associated with the face F ∈ E , i.e.,

1
|F ′|

∫
F ′
θF (x) ds = δFF ′ ∀F ′ ∈ E ,

where δFF ′ is the Kronecker delta. The local and global CR interpolants are defined
respectively by

IcrK v =
∑
F∈EK

(
1
|F |

∫
F

vds

)
θF (x) and Icrv =

∑
F∈E

(
1
|F |

∫
F

vds

)
θF (x)

for the respective v ∈ W 1,1(K) and v ∈ W (T ). It was shown (see, e.g., Theorem
1.103 and Example 1.106(ii) of [17]) that for v ∈ H1+t(K) with 0 ≤ t ≤ 1

(3.2) ‖v − IcrK v‖0,K + hK‖∇(v − IcrK v)‖0,K ≤ C h1+t
K |∇v|t,K .
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Let f0 be piecewise constant such that its restriction on K ∈ T is the average of f on
K. Define local and global weighted oscillations by

osc 1,α(f,K) = hK√
αK
‖f − f0‖0,K and osc 1,α(f, T ) =

(∑
K∈T

osc 1,α(f,K)2

)1/2

,

respectively.
Theorem 3.1. Let u be the solution of (1.3) and uK be its restriction on K ∈ T .

Assume that u ∈ H1+s(Ω)∩ V 1+s(T ) for some s > 0 and that u|K ∈ H1+sK (K) with
elementwise defined sK > 0 for all K ∈ T . Let ucr ∈ V cr be the nonconforming
finite element approximation in (3.1). For both two and three dimensions, the error
estimates

‖α1/2∇h(u− ucr)‖0 ≤ C
(

inf
v∈V cr

‖α1/2∇h(u− v)‖0 + osc 1,α(f, T )
)

≤ C

(∑
K∈T

h
2 min{1,sK}
K |α1/2∇u|2sK ,K

)1/2

+ osc 1,α(f, T )

(3.3)

hold, where C is a positive constant independent of the jump of the diffusion coeffi-
cient α.

Proof. The second inequality in (3.3) is an immediate consequence of the first
inequality in (3.3) and the approximation property in (3.2). By Strang’s lemma, to
show the validity of the first inequality in (3.3), it suffices to prove

sup
w∈V cr

|(f, w)− (α∇u, ∇hw)|
‖a1/2∇hw‖0,Ω

≤ C
(

inf
v∈V cr

‖a1/2∇h(u− v)‖0,Ω + osc 1,α(f, T )
)
.

(3.4)

To this end, for any w ∈ V cr and any F ∈ E , by the fact that
∫
F

[[w]]ds = 0, the
mean value of w over F is single-valued constant, i.e.,

w̄F = 1
|F |

∫
F

w|K+
F
ds = 1

|F |

∫
F

w|K−
F
ds,

where K+
F and K−F are two elements sharing the common face F . Moreover, w̄F = 0

for F ∈ ED. Hence, by the continuity of the flux n · α∇u across face F ∈ EI , we have

(3.5)
∑
K∈T

∑
F∈∂K

∫
F

(
n · α∇u

)
w̄F ds =

∑
F∈E

∫
F

[[(n · a∇u) w̄F ]] ds = 0.

Now, it follows from (3.1), integration by parts, (3.5), the fact that (nF · α∇v|K)F is
a constant, and (2.7) that for all v ∈ V cr

(α∇u, ∇hw)− (f, w)

=
∑
K∈T

∫
∂K

(n · α∇u)w ds =
∑
K∈T

∑
F∈∂K

∫
F

(n · α∇u) (w − w̄F ) ds

=
∑
K∈T

∑
F∈∂K

∫
F

(
n · α∇(u− v)

)
(w − w̄F ) ds
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≤ C
∑
K∈T

∑
F∈∂K

h
−1/2
K ‖w − w̄F ‖0,F (‖α∇(u− v)‖0,K + hK‖f‖0,K)

≤ C
∑
K∈T

∑
F∈∂K

(
‖α1/2∇(u− v)‖0,K + hKα

−1/2
K ‖f‖0,K

)
‖α1/2∇w‖0,K .

The last inequality is due to the fact that ‖w − w̄F ‖0,F ≤ C h1/2
K ‖∇w‖0,K . Now, the

Cauchy–Schwarz inequality gives∣∣(α∇u, ∇hw)− (f, w)
∣∣

‖a1/2∇hw‖0,Ω
≤ C

 inf
v∈V cr

‖α1/2∇h(u− v)‖0 +
(∑
K∈T

h2
Kα
−1
K ‖f‖

2
0,K

)1/2


for all w ∈ V cr. Without the QMA, we have the efficiency bound (see (3.11))

hKα
−1/2
K ‖f‖0,K ≤ C

(
‖α1/2∇h(u− v)‖0,∆K

+ osc 1,α(f,∆K)
)

for all v ∈ V cr and all K ∈ T , where ∆K is a local patch of elements containing K.
Combining the above two inequalities implies the validity of (3.4). This completes
the proof of the theorem.

Since the linear conforming finite element solution uc1 belongs to V cr, we have

inf
v∈V cr

‖α1/2∇h(u− v)‖0 ≤ ‖α1/2∇h(u− uc1)‖0,Ω,

which, together with Theorem 3.1, implies the following robust comparison result
between the linear conforming finite element and the CR nonconforming finite element
approximations.

Corollary 3.2. Without the QMA, there exists a positive constant C indepen-
dent of the jump of the diffusion coefficient such that

‖α1/2∇h(u− ucr)‖0,Ω ≤ C
(
‖α1/2∇h(u− uc1)‖0,Ω + osc 1,α(f, T )

)
.

3.2. Residual-based a posteriori error estimator. This section first de-
scribes local indicator and global estimator for the CR nonconforming finite element
approximation. The estimator for the nonconforming elements introduced in [7] is
more accurate than the existing estimators (see, e.g., [1, 8]) and differs in replacing
the face tangential derivative jumps by the face solution jumps. The local indicator
and the global estimator are then shown to be efficient and reliable, respectively.

3.2.1. Error indicator and estimator. For each F ∈ E , let tF be the unit
vector tangent to F for d = 2, and let nF be the unit vector normal to F . Denote a
tangential component of a vector field τ on F by

γF (τ ) :=
{

τ · tF , d = 2,

τ × nF , d = 3.

To this end, let w+
F and w−F be weights defined on F satisfying w+

F (x)+w−F (x) = 1,
and introduce the following weighted averages:

{v(x)}Fw =
{

w−F v
−
F + w+

F v
+
F , F ∈ EI ,

v|−F , F ∈ E
D

and {v(x)}wF =
{

w+
F v
−
F + w−F v

+
F , F ∈ EI ,

0, F ∈ E
D
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for all F ∈ E . A simple calculation leads to the following identity:

(3.6) [[uv]]F = {v}wF [[u]]F + {u}Fw [[v]]F .

For any F ∈ EI , denote by α+
F and α−F the diffusion coefficients on K+

F and K−F ,
respectively. Denote the arithmetic and the harmonic averages of α on F ∈ E by

α
F ,A =


α+
F

+ α−
F

2 , F ∈ E
I
,

α−
F
, F ∈ E

D

and α
F ,H =


2α+

F
α−
F

α+
F

+ α−
F

, F ∈ E
I
,

α−
F
, F ∈ E

D
,

respectively, which are equivalent to the respective maximum and minimum of α:
(3.7)

1
2 max{α+

F
, α−

F
}≤α

F ,A≤max{α+
F
, α−

F
} and min{α+

F
, α−

F
}≤α

F ,H≤
1
2 min{α+

F
, α−

F
}.

In order to guarantee the robustness of the error estimate with respect to α, we choose
harmonic weights in this paper:

(3.8) w±F = α∓F
α−F + α+

F

.

It is easy to show that

(3.9) w±F α
±
F ≤

√
α±α

F ,H ,
ω+
F√
α−F

≤

√
1

αF,A
, and ω−F√

α+
F

≤

√
1

αF,A
.

Denote the element residuals and the corresponding indicators by

rcrK = f0|K and ηcrr,K = h
K√
α
K

‖rcrK ‖0,K ∀ K ∈ T ,

respectively. Denote the respective face flux and tangential derivative jumps by

jcrn,F = [[α∇hucr · n]]F ∀ F ∈ EI and jcrt,F = [[γF (∇hucr)]]F ∀ F ∈ E

and the indicators corresponding to the face flux, tangential derivative, and solution
jumps by

ηcrj,n,F =

√
hF
α
F ,A

‖jcrn,F ‖0,F , ηcrj,t,F =
√
α
F ,HhF ‖jcrt,F ‖0,F ,

and ηcrj,u,F =
√
α
F ,H

hF
‖[[ucr]]‖0,F ,

respectively, where hF is the diameter of the face F . Then the local indicator of the
residual type for the nonconforming elements, introduced in [7] and to be studied in
this paper, is given by

ηcrK =
((
ηcrr,K

)2 +
∑

F∈EK∩EI

1
2
(
ηcrj,n,F

)2 +
∑

F∈EK∩EI

1
2
(
ηcrj,u,F

)2 +
∑

F∈EK∩ED

(
ηcrj,u,F

)2)1/2

.

Now the global estimator for the nonconforming elements is given by

ηcr =
(∑
K∈T

(ηcrK )2

)1/2

=
(∑
K∈T

(
ηcrr,K

)2 +
∑
F∈EI

(
ηcrj,n,F

)2 +
∑
F∈E

(
ηcrj,u,F

)2)1/2

.
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Lemma 3.3. Let F ∈ EI . For any vcr ∈ V cr, we have

(3.10) ‖[[vcr]]‖0,F


= 1√

12
hF ‖[[∇vcr · tF ]]‖0,F if d = 2,

≤ hF ‖[[∇vcr × nF ]]‖0,F if d = 3.

Proof. The equality in (3.10) is proved in [7] by a direct calculation. To show
the validity of the inequality in (3.10), for any vcr ∈ V cr, without loss of generality,
assume that the face F lies in the xy plane and that the centroid of F is at the origin.
Then there exist constants a and b such that

[[vcr]]F = ax+ by and [[∇vcr × nF ]]F = (b,−a, 0).

Since hF is the diameter of the circumcircle of F , we have that x2 + y2 ≤ h2
F for all

(x, y) ∈ F . Now, it follows the Cauchy–Schwartz inequality that∥∥∥[[vcr]]
∥∥∥2

0,F
=
∫∫

F

(ax+ by)2 dxdy≤(a2 + b2)
∫∫

F

(
x2+y2) dxdy=h2

F

∥∥∥[[∇vcr×nF ]]
∥∥∥2

0,F
.

This completes the proof of the lemma.
Remark 3.4. Instead of the face solution jumps, existing residual based error esti-

mators for the nonconforming elements use the face tangential derivative jumps ηcrj,t,F .
Lemma 3.3 indicates that

ηcrj,u,F < ηcrj,t,F .

Thus, our estimator ηcr is less than the existing estimator and, hence, it is more
accurate (see Figure 6 in [7]).

Without the QMA, the following robust local efficiency bound

(3.11) ηcrK ≤ C
(
‖α1/2∇(u− ucr)‖4K + osc 1,α(f,4K)

)
can be found in Theorem 6.8 of [10] and Theorem 5.1 of [7]. The key idea of the proof
on (3.11) is to use either element or edge bubble functions in order to localize the
error as well as to simplify the boundary conditions.

3.2.2. Reliability bound. Without the QMA, the robust reliability bound for
the nonconforming elements was first established in [7] for a slight modification of the
estimator ηcr in two dimensions. The modification is due to the failure of bounding
the solution jump term. This difficulty may be overcome by using the trace inequality
introduced in section 2.

Theorem 3.5. Let u and ucr be the solutions of (1.3) and (3.1), respectively.
Without the QMA in both two and three dimensions, the estimator ηcr for the non-
conforming elements satisfies the following robust reliability bound:

(3.12) ‖α1/2∇h(u− ucr)‖0 ≤ C (ηcr + osc1,α(f)) ,

where C is a positive constant independent of α.
Proof. Let

ecr = u− ucr and ecrI = Icru− ucr = Icrecr.
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Then we have the following L2 representation of the true error in the (broken) energy
norm (see Lemma 2.1 of [7]):

‖α1/2∇hecr‖20 =
∑
K∈T

(f, ecr − ecrI )K −
∑
F∈EI

∫
F

jcrn,F {ecr − ecrI }w ds

−
∑
F∈E

∫
F

{α∇ecr · n}w [[ucr]] ds.

The first two terms of the above equality may be bounded in a similar fashion as that
in [7]. That is, it follows from the Cauchy–Schwarz and triangle or trace inequalities,
(3.2), and (3.9) that

(3.13) (f, ecr − ecrI )K ≤ C
(
ηcrr,K + osc 1,α(f,K)

)
‖α1/2∇hecr‖0,K ∀ K ∈ T

and∫
F

jcrn,F {e− ecrI }w ds ≤ C‖jcrn,F ‖0,F {ω+‖(ecr − ecrI )|K−
F
‖0,F + ω−‖(ecr − ecrI )K+

F
‖0,F }

≤ C

√
hF
α
F ,A

‖jcrn,F ‖0,F ‖α1/2∇ecr‖K+
F
∪K−

F
∀F ∈ EI .(3.14)

To bound the third term on the solution jump, the key is the inequality in (2.7), which
together with (3.9) and the local efficiency bound of the element residual, yields

∫
F

{α∇ecr · nF }w [[ucr]] ds

(3.15)

=
∫
F

[[ucr]]
(
ω+(α+∇ecr · n)|K+ + ω−(α−∇ecr · n)|K−

)
ds

≤ C
√
αF,H
hF

‖[[ucr]]‖0,F
∑
K∈TF

(
‖α1/2∇ecr‖0,K + hKα

−1/2
K ‖f +∇ · (α∇ucr)‖0,K

)
≤ C ηcrj,u,F

∑
K∈TF

(
‖α1/2∇hecr‖0,K + osc1,α(f,K)

)
∀ F ∈ E .

Summing (3.13) over K ∈ T , (3.14) over F ∈ EI , and (3.15) over F ∈ E implies the
validity of (3.12). This completes the proof of the theorem.

4. Discontinuous Galerkin finite element method. This section establishes
the a priori and the residual based a posteriori error estimates for the discontinuous
Galerkin finite element approximation.

For s > 0, let

H1+s(T ) = {v ∈ L2(Ω) : v|K ∈ H1+s(K) ∀K ∈ T }

and V 1+s(T ) = {v ∈ H1+s(K) : (∆v)|K ∈ L2(K) ∀K ∈ T }.

In [8] we introduced the following variational formulation for the interface problem in
(1.1) and (1.2): find u ∈ V 1+ε(T ) with ε > 0 such that

(4.1) adg(u, v) = (f, v) ∀ v ∈ V 1+ε(T ),
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where the bilinear form adg(·, ·) is given by

adg(u, v) = (α∇hu,∇hv) +
∑
F∈E

∫
F

γ
α
F ,H

hF
[[u]][[v]] ds

−
∑
F∈E

∫
F

{α∇u · nF }Fw [[v]]ds−
∑
F∈E

∫
F

{α∇v · nF }Fw [[u]]ds.

The γ is a positive constant only depending on the shape of elements.
Denote the discontinuous finite element space on the triangulation T by

Dk = {v ∈ L2(Ω) : v|K ∈ Pk(K) ∀K ∈ T };

the discontinuous Galerkin finite element method is then to seek udgk ∈ Dk such that

(4.2) adg(udgk , v) = (f, v) ∀ v ∈ Dk.

The difference between (4.1) and (4.2) leads to the following error equation:

(4.3) adg(u− udgk , v) = 0 ∀ v ∈ Dk.

For simplicity, we consider only this symmetric version of the interior penalty discon-
tinuous Galerkin finite element method since its extension to other versions of discon-
tinuous Galerkin approximations is straightforward. Define the jump seminorm and
the DG norm by

‖v‖J,F =
√
α
F ,H

hF
‖[[v]]‖0,F and |||v|||dg =

(
‖α1/2∇hv‖20,Ω +

∑
F∈E
‖v‖2J,F

)1/2

,

respectively, for all v ∈ H1(T ). It was shown in [8] that there exists a positive constant
C independent of the jump of α such that

(4.4) C |||v|||2dg ≤ adg(v, v) ∀v ∈ Dk.

4.1. A priori error estimate. Let fk be the L2 projection of f onto Dk for
k ≥ 0. Define local and global weighted oscillations by

osc k,α(f,K) = hK√
αK
‖f − fk−1‖0,K and osc k,α(f, T ) =

(∑
K∈T

osc k,α(f,K)2

)1/2

,

respectively. To handle the case that local regularity 1 + sK of u may be larger than
2, we also use the following notation:

(4.5) appα(f,K) =


osc 1,α(f,K) if 0 < sK < 1,

h
min{k,sK}
K α

1/2
K |∇u|sK ,K if sK ≥ 1.

Theorem 4.1. Let u be the solution of (1.3) and u|K be its restriction on K ∈ T .
Assume that u ∈ H1+s(Ω) ∩ V 1+s(T ) with s > 0 and that u|K ∈ H1+sK (K) with
elementwise defined sK > 0 for all K ∈ T . Let udgk ∈ Dk be the discontinuous
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Galerkin finite element approximation in (4.2). In both two and three dimensions, we
have the following error estimates:

|||u− udgk |||dg ≤ C
(

inf
v∈Dk

|||u− v|||dg + osc k,α(f, T )
)

≤ C

(∑
K∈T

h2sK
K |α1/2∇u|2sK ,K + appα(f,K)2

)1/2

,(4.6)

where C is a positive constant independent of the jump of the diffusion coefficient α.
Proof. For any F ∈ E , it follows from the trace inequality and (3.7) that for all

v ∈ Dk√
α
F ,H/hF ‖[[u− v]]‖0,F ≤

√
α
F ,H/hF

(
‖(u− v)|K+

F
‖0,F + ‖(u− v)|K−

F
‖0,F

)
≤ C

∑
κ=−,+

(
h−1
Kκ
F
‖α1/2(u− v)‖0,Kκ

F
+ ‖α1/2∇(u− v)‖0,Kκ

F

)
.

Since u|K ∈ H1+s
K (K) with sK ≥ 1, then f |K = −α∆u|K ∈ Hs

K
−1(K). It is easy

to show that
osc k,α(f,K) ≤ hmin{k,sK}

K α
1/2
K |∇u|sK ,K .

Now, the second inequality in (4.6) is a direct consequence of the first inequality in
(4.6) and the elementwise approximation property of discontinuous piecewise polyno-
mials. By the triangle inequality, we have

|||u− udgk |||dg ≤ |||u− v|||dg + |||udgk − v|||dg ∀ v ∈ Dk.

To show the validity of the first inequality in (4.6), it suffices to prove that

(4.7) |||udgk − v|||dg ≤ C (|||u− v|||dg + osc k,α(f, T )) ∀ v ∈ Dk.

To this end, for any v ∈ Dk, let

e = u− v and ek = udgk − v.

It follows from the coercivity in (4.4), the error equation in (4.3), the Cauchy–Schwarz
inequality, the fact that [[u]]F = 0 for all F ∈ E , and the first inequality in (2.7) that

C |||ek|||2dg ≤ adg(ek, ek) = adg(e, ek)

= (α∇he,∇hek) +
∑
F∈E

∫
F

γ α
F ,H [[e]][[ek]]
hF

ds−
∑
F∈E

∫
F

{α∇ek · n}Fw [[e]]ds

−
∑
F∈E

∫
F

{α∇e · n}Fw [[ek]]ds

≤ C
{
|||e|||dg |||ek|||dg +

∑
F∈E
‖[[e]]‖0,F ‖{α∇ek · n}Fw‖0,F

+
∑
F∈E

h
−1/2
F ‖[[ek]]‖0,F

∑
κ=−,+

wκFα
κ
F

(
‖∇e‖0,Kκ

F
+ hK‖∆e‖0,Kκ

F

)}
≡ C (I1 + I2 + I3) .
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By the triangle, trace, and inverse inequalities, we have that

‖{α∇ek · n}Fw‖0,F ≤ C
∑

κ=−,+
wκ
F
h
−1/2
Kκ
F
α

1/2
Kκ
F
‖α1/2∇ek‖0,Kκ

F
.

With the choice of the weights in (3.8), a simple calculation shows that

wκ
F

√
ακ
F

α
F ,H

≤
√

2
2 for κ = −, +.

Together with the Cauchy–Schwarz inequality, we have

I2 ≤ C
∑
F∈E
‖[[e]]‖J,F

∑
κ=−,+

‖α1/2∇ek‖0,Kκ
F
≤ C |||e|||dg |||ek|||dg

I3 ≤ C
∑
F∈E
‖[[ek]]‖J,F

∑
κ=−,+

(
‖α1/2∇e‖0,Kκ

F
+ hKκ

F
‖α1/2∆e‖0,Kκ

F

)

≤ C |||ek|||dg

|||e|||dg +
(∑
KT

h2
KαK‖∆e‖20,K

)1/2
 .

Combining those inequalities gives that

|||ek|||dg ≤ C

|||e|||dg +
(∑
K∈T

h2
KαK‖∆e‖20,K

)1/2
 .

Now, (4.7) is a direct consequence of the following efficiency bound (see (4.8), or
Lemma 5.2 in [8] for the linear case):

hKα
1/2
K ‖∆e‖0,K ≤ C

(
‖α1/2∇e‖0,∆K

+ osc k,α(f,∆K)
)
,

where ∆K is a local patch of elements containing K. This completes the proof of the
inequality in (4.7) and, hence, the theorem.

4.2. Residual-based a posteriori error estimator. This section describes
the local indicator and global estimator for the discontinuous Galerkin finite element
approximations and establishes the local efficiency and the global reliability bounds.

4.2.1. Error indicator and estimator. Denote the element residuals and the
corresponding indicators by

rdgK = fk−1 +∇ · (α∇udgk ) and ηdgr,K = h
K√
α
K

‖rdgK ‖0,K ∀K ∈ T ,

respectively. Denote the respective face flux and solution jumps by

jdgn,F = [[α∇hudgk · n]]F ∀ F ∈ EI and jdgu,F = [[udgk ]] ∀ F ∈ E

and the indicators corresponding to the face flux and solution jumps by

ηdgj,n,F =

√
hF
α
F ,A

‖jdgn,F ‖0,F and ηdgj,u,F =
√
α
F ,H

hF
‖[[udg]]‖0,F ,
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respectively. Then the local indicator of the residual type for the discontinuous ele-
ments is given [8] by

ηdgK =
((

ηdgr,K

)2
+

∑
F∈EK∩EI

1
2

(
ηdgj,n,F

)2
+

∑
F∈EK∩EI

1
2

(
ηdgj,u,F

)2

+
∑

F∈EK∩ED

(
ηdgj,u,F

)2
)1/2

.

Now the global estimator for the discontinuous elements is given by

ηdg =
(∑
K∈T

(
ηdgK

)2
)1/2

=
(∑
K∈T

(ηdgr,K)2 +
∑
F∈EI

(ηdgj,n,F )2 +
∑
F∈E

(ηdgj,u,F )2

)1/2

.

The local efficiency bound of ηdgK for all K ∈ T was established without the
QMA. For example, it is proved in [8, Lemma 5.2 and Theorem 5.3] for the linear
approximation that for any K ∈ T , there exists a positive constant C independent of
α and hK such that

(4.8) ηdgK ≤ C
(
|||u− ukdg|||4K + osc k,α(f,4K)

)
,

where 4K is a local neighborhood of K. The generalization to the higher degree
approximation is trivial.

4.2.2. Reliability bound. Without the QMA, the robust reliability bound for
the discontinuous Galerkin finite element method may be obtained in a similar fashion
as that for the nonconforming elements. Again, the key steps are the L2 representation
of the true error and the inequality (2.7) to bound the solution jump. Moreover, we
simply use the local constant average of the error instead of the modified Clément
interpolation due to the complete local feature of the discontinuous elements.

Let u and udgk be the solutions of (1.3) and (4.2), respectively. Denote the true
error by

edg = u− udgk .

Let ēdg be piecewise constant on T with ēdg|K being the average of edg on K ∈ T . It
is well known that

(4.9) ‖edg − ēdg‖0,K ≤ C hK ‖∇ edg‖0,K ∀K ∈ T ,

where C only depends on the regularity of T .
Lemma 4.2. The true error of the discontinuous finite element approximation in

the broken energy norm has the following error representation:

‖α1/2∇h edg‖20 =
∑
K∈T

(
f +∇ · (α∇udgk ), edg − ēdg

)
K
−
∑
F∈E

∫
F

{α∇edg · n}w [[udgk ]] ds

−
∑
F∈EI

∫
F

[[α∇udg · n]] {edg − ēdg}w ds−
∑
F∈E

∫
F

γ
α
F ,H

hF
[[udgk ]] [[ēdg]] ds.(4.10)
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Proof. It follows from the error equation in (4.3), integrations by parts, (3.6), the
continuities of the solution u and the normal component of the flux −α∇u across any
face F ∈ EI , and the homogeneous Dirichlet boundary condition that

‖α1/2∇h edg‖20 =
(
α∇hedg, ∇h(edg − ēdg)

)
=
∑
K∈T

(
f +∇ · (α∇udgk ), edg − ēdg

)
K

+
∫
∂K

(α∇edg · n)(edg − ēdg) ds

=
∑
K∈T

(
f +∇ · (α∇udgk ), edg − ēdg

)
K
−
∑
F∈EI

∫
F

{α∇edg · n}w [[udgk + ēdg]] ds

−
∑
F∈EI

∫
F

[[α∇udg · n]] {edg − ēdg}wds−
∑
F∈ED

∫
F

(α∇edg · n)(udgk + ēdg) ds.

On the other hand, the fact that adg(edgk , ēdg) = 0 implies

∑
F∈E

∫
F

γ
α
F ,H

hF
[[edg]] [[ēdg]] ds−

∑
F∈EI

∫
F

{α∇edg · n}w [[ēdg]] ds

−
∑
F∈ED

∫
F

(α∇edg · n) ēdg ds = 0.

Combining the above two equalities gives (4.10). This completes the proof of the
lemma.

Theorem 4.3. Let u and udgk be the solution of (1.3) and (4.2), respectively.
Without the QMA in both two and three dimensions, the estimator ηdg for the discon-
tinuous element approximation satisfies the following robust reliability bound:

(4.11) |||u− udgk |||dg ≤ C (ηdg + osck,α(f, T )) ,

where C is a positive constant independent of α.
Proof. By the definition of the DG norm ||| · |||dg, to prove the validity of (4.11), it

suffices to show that

(4.12) ‖α1/2∇h (u− udgk )‖0 ≤ C (ηdg + osck,α(f, T )) .

To this end, denote the estimators corresponding to the element residual, the face
flux jump, and the solution jump by

ηdgr =
(∑
K∈T

(
ηdgr,K

)2
)1/2

, ηdgj,n =
(∑
F∈EI

(
ηdgj,n,F

)2
)1/2

,

and ηdgj,u =
(∑
F∈E

(
ηdgj,u,F

)2
)1/2

,

respectively. Denote four terms in Lemma 4.2 by I1, I2, I3, and I4, respectively.
Hence,

‖α1/2∇h (u− udgk )‖20 = I1 + I2 + I3 + I4.
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In a similar fashion as the proof of Theorem 3.5, the Ii for i = 1, 2, 3 may be bounded
as follows:

I1 ≤ C
(
ηdgr + osc k,α(f, T )

)
‖α1/2∇h edg‖0,

I2 ≤ C ηdgj,u
(
‖α1/2∇h edg‖0 + osc k,α(f, T )

)
,

and I3 ≤ C ηdgj,n ‖α
1/2∇h edg‖0.

To bound I4, for all F ∈ E , it follows from the triangle and the Cauchy–Schwartz
inequalities, the continuity of the solution u, the trace inequality, and (4.9) that∫

F

α
F ,H

hF
[[udgk ]] [[ēdg]] ds ≤

∫
F

α
F ,H

hF
[[udgk ]]

(
‖[[edg]]‖0,F + ‖[[edg − ēdg]]‖0,F

)
ds

≤
(
ηdgj,u,F

)2
+ ηdgj,u,F

√
α
F ,H

hF
‖[[edg − ēdg]]‖0,F ≤

(
ηdgj,u,F

)2

+ C ηdgj,u,F
∑
K∈TF

‖α1/2∇hedg‖0,K .

Summing over all faces F ∈ E and using the Cauchy–Schwarz inequality give

I4 = γ
∑
F∈E

∫
F

α
F ,H

hF
[[udgk ]] [[ēdg]] ds ≤ C

((
ηdgj,u

)2
+ ηdgj,u ‖α

1/2∇h edg‖0
)
.

Combining the bounds for all Ii and using the Cauchy–Schwarz inequality, we have

‖α1/2∇h edg‖20 ≤ C
(
ηdgr + ηdgj,n + ηdgj,u + osc k,α(f, T )

)
‖α1/2∇h edg‖0

+ C

((
ηdgj,u

)2
+ osc k,α(f, T )2

)
,

which, together with the inequality 2ab ≤ a2 + b2, implies

‖α1/2∇h edg‖0 ≤ C (ηdg + osc k,α(f, T )) .

This proves the validity of (4.12) and, hence, the theorem. This completes the proof
of the theorem.
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