128 research outputs found

    Vizard: A Metadata-hiding Data Analytic System with End-to-End Policy Controls

    Get PDF
    Owner-centric control is a widely adopted method for easing owners\u27 concerns over data abuses and motivating them to share their data out to gain collective knowledge. However, while many control enforcement techniques have been proposed, privacy threats due to the metadata leakage therein are largely neglected in existing works. Unfortunately, a sophisticated attacker can infer very sensitive information based on either owners\u27 data control policies or their analytic task participation histories (e.g., participating in a mental illness or cancer study can reveal their health conditions). To address this problem, we introduce Vizard\textsf{Vizard}, a metadata-hiding analytic system that enables privacy-hardened and enforceable control for owners. Vizard\textsf{Vizard} is built with a tailored suite of lightweight cryptographic tools and designs that help us efficiently handle analytic queries over encrypted data streams coming in real-time (like heart rates). We propose extension designs to further enable advanced owner-centric controls (with AND, OR, NOT operators) and provide owners with release control to additionally regulate how the result should be protected before deliveries. We develop a prototype of Vizard\textsf{Vizard} that is interfaced with Apache Kafka, and the evaluation results demonstrate the practicality of Vizard\textsf{Vizard} for large-scale and metadata-hiding analytics over data streams

    Building a digital twin of EDFA: a grey-box modeling approach

    Full text link
    To enable intelligent and self-driving optical networks, high-accuracy physical layer models are required. The dynamic wavelength-dependent gain effects of non-constant-pump erbium-doped fiber amplifiers (EDFAs) remain a crucial problem in terms of modeling, as it determines optical-to-signal noise ratio as well as the magnitude of fiber nonlinearities. Black-box data-driven models have been widely studied, but it requires a large size of data for training and suffers from poor generalizability. In this paper, we derive the gain spectra of EDFAs as a simple univariable linear function, and then based on it we propose a grey-box EDFA gain modeling scheme. Experimental results show that for both automatic gain control (AGC) and automatic power control (APC) EDFAs, our model built with 8 data samples can achieve better performance than the neural network (NN) based model built with 900 data samples, which means the required data size for modeling can be reduced by at least two orders of magnitude. Moreover, in the experiment the proposed model demonstrates superior generalizability to unseen scenarios since it is based on the underlying physics of EDFAs. The results indicate that building a customized digital twin of each EDFA in optical networks become feasible, which is essential especially for next generation multi-band network operations

    Force-modulated reductive elimination from platinum(ii) diaryl complexes

    Get PDF
    Coupled mechanical forces are known to drive a range of covalent chemical reactions, but the effect of mechanical force applied to a spectator ligand on transition metal reactivity is relatively unexplored. Here we quantify the rate of C(sp(2))–C(sp(2)) reductive elimination from platinum(ii) diaryl complexes containing macrocyclic bis(phosphine) ligands as a function of mechanical force applied to these ligands. DFT computations reveal complex dependence of mechanochemical kinetics on the structure of the force-transducing ligand. We validated experimentally the computational finding for the most sensitive of the ligand designs, based on MeOBiphep, by coupling it to a macrocyclic force probe ligand. Consistent with the computations, compressive forces decreased the rate of reductive elimination whereas extension forces increased the rate relative to the strain-free MeOBiphep complex with a 3.4-fold change in rate over a ∼290 pN range of restoring forces. The calculated natural bite angle of the free macrocyclic ligand changes with force, but (31)P NMR analysis and calculations strongly suggest no significant force-induced perturbation of ground state geometry within the first coordination sphere of the (P–P)PtAr(2) complexes. Rather, the force/rate behavior observed across this range of forces is attributed to the coupling of force to the elongation of the O⋯O distance in the transition state for reductive elimination. The results suggest opportunities to experimentally map geometry changes associated with reactions in transition metal complexes and potential strategies for force-modulated catalysis

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
    • …
    corecore