478 research outputs found

    Risk Controlled Image Retrieval

    Full text link
    Most image retrieval research focuses on improving predictive performance, but they may fall short in scenarios where the reliability of the prediction is crucial. Though uncertainty quantification can help by assessing uncertainty for query and database images, this method can provide only a heuristic estimate rather than an guarantee. To address these limitations, we present Risk Controlled Image Retrieval (RCIR), which generates retrieval sets that are guaranteed to contain the ground truth samples with a predefined probability. RCIR can be easily plugged into any image retrieval method, agnostic to data distribution and model selection. To the best of our knowledge, this is the first work that provides coverage guarantees for image retrieval. The validity and efficiency of RCIR is demonstrated on four real-world image retrieval datasets, including the Stanford CAR-196 (Krause et al. 2013), CUB-200 (Wah et al. 2011), the Pittsburgh dataset (Torii et al. 2013) and the ChestX-Det dataset (Lian et al. 2021)

    Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation

    Full text link
    Monocular 3D object detection task aims to predict the 3D bounding boxes of objects based on monocular RGB images. Since the location recovery in 3D space is quite difficult on account of absence of depth information, this paper proposes a novel unified framework which decomposes the detection problem into a structured polygon prediction task and a depth recovery task. Different from the widely studied 2D bounding boxes, the proposed novel structured polygon in the 2D image consists of several projected surfaces of the target object. Compared to the widely-used 3D bounding box proposals, it is shown to be a better representation for 3D detection. In order to inversely project the predicted 2D structured polygon to a cuboid in the 3D physical world, the following depth recovery task uses the object height prior to complete the inverse projection transformation with the given camera projection matrix. Moreover, a fine-grained 3D box refinement scheme is proposed to further rectify the 3D detection results. Experiments are conducted on the challenging KITTI benchmark, in which our method achieves state-of-the-art detection accuracy.Comment: 11 pages, 8 figures, AAAI202

    Effect of exogenous nitric oxide on sperm motility in vitro

    Full text link
    BACKGROUND: Nitric oxide (NO) has been shown to be important in sperm function, and the concentration of NO appears to determine these effects. Studies have demonstrated both positive and negative effects of NO on sperm function, but have not been able to provide a clear link between NO concentration and the extent of exposure to NO. To study the relationship between nitric oxide and sperm capacitationin vitro, and to provide a theoretical basis for the use of NO-related preparations in improving sperm motility for in vitro fertilization, we investigated the effects of NO concentration and time duration at these concentrations on in vitro sperm capacitation in both normal and abnormal sperm groups. We manipulated NO concentrations and the time duration of these concentrations using sodium nitroprusside (an NO donor) and NG-monomethyl-L-argenine (an NO synthase inhibitor). RESULTS: Compared to the normal sperm group, the abnormal sperm group had a longer basal time to reach the appropriate concentration of NO (p < 0.001), and the duration of time at this concentration was longer for the abnormal sperm group (p < 0.001). Both the basal time and the duration of time were significantly correlated with sperm viability and percentage of progressive sperm (p < 0.001). The experimental group had a significantly higher percentage of progressive sperm than the control group (p < 0.001). CONCLUSIONS: We hypothesize that there is a certain regularity to both NO concentration and its duration of time in regards to sperm capacitation, and that an adequate duration of time at the appropriate NO concentration is beneficial to sperm motility

    The Fracture Influence on the Energy Loss of Compressed Air Energy Storage in Hard Rock

    Get PDF
    A coupled nonisothermal gas flow and geomechanical numerical modeling is conducted to study the influence of fractures (joints) on the complex thermohydromechanical (THM) performance of underground compressed air energy storage (CAES) in hard rock caverns. The air-filled chamber is modeled as porous media with high porosity, high permeability, and high thermal conductivity. The present analysis focuses on the CAES in hard rock caverns at relatively shallow depth, that is, ≤100 m, and the pressure in carven is significantly higher than ambient pore pressure. The influence of one discrete crack and multiple crackson energy loss analysis of cavern in hard rock media are carried out. Two conditions are considered during each storage and release cycle, namely, gas injection and production mass being equal and additional gas injection supplemented after each cycle. The influence of the crack location, the crack length, and the crack open width on the energy loss is studied
    • …
    corecore