7,219 research outputs found

    Scheme for sharing classical information via tripartite entangled states

    Full text link
    We investigate schemes for quantum secret sharing and quantum dense coding via tripartite entangled states. We present a scheme for sharing classical information via entanglement swapping using two tripartite entangled GHZ states. In order to throw light upon the security affairs of the quantum dense coding protocol, we also suggest a secure quantum dense coding scheme via W state in analogy with the theory of sharing information among involved users.Comment: 4 pages, no figure. A complete rewrritten vession, accepted for publication in Chinese Physic

    Estimation of statistical energy analysis loss factor for fiber reinforced plastics plate of yachts

    Get PDF
    Loss factor is one of the most significant parameters of Statistical Energy Analysis (SEA) which represents the damping loss characteristics of a system and indicates the ability of its vibration energy consumption. In order to estimate it, the power input method (PIM) and the impulse response decay method (IRDM) have become widely used especially when the object of study is made of Fiber Reinforced Plastics (FRP) of which dynamic interaction is really complicated. Numerical simulation is also applied to analyze the loss factor of the spring-damping-system with single degree of freedom (SDOF) using MATLAB to introduce the identification procedure of PIM and IRDM. With the comparison of the methods, the analytical study indicates these techniques are effective for the estimation of loss factor. This paper focuses on an experimental approach to get the SEA loss factor of FRP plate and the test investigations are performed in detail. The requirements and limitations of each method applied are discussed and PIM is a better solution dealing with this kind of the composite material. The loss factor of test specimen is obtained to provide a valuable reference for the prediction and control of vibration and noise of yachts with SEA

    The Effects Of Surface Characteristics On Liquid Behaviors Of Fins During Frosting And Defrosting Processes

    Get PDF
    Liquid behaviors, including droplet condensation and frost melt water retention, of fins during frosting and defrosting processes on three aluminum fins with different surface characteristics under winter operating conditions of an air source heat pump were investigated. The effects of the surface characteristics, including the contact angle and the contact angle hysteresis, were analyzed. Droplets were observed firstly on a bare fin and on a super hydrophobic fin last, and exhibited different sizes and shapes under the effects of the surface characteristics. The droplet distribution was sparser on the super hydrophobic fin than on the other two fins because of the consolidation, rolling and departure of droplets. There was an obvious difference on frost melt water retention between the three fins. Residual water formed a thin water film on a hydrophilic fin, while only a few spherical droplets of small sizes stayed on the super hydrophobic fin. The effects of the surface characteristics were found to be significant on the mass of residual water, which decreased by 79.82% on the super hydrophobic fin compared with that on the hydrophilic fin. Finally, the effects of the contact angle and the contact angle hysteresis on frost melt water retention were quantitatively analyzed. Results indicate that the super hydrophobic fin can restrain the droplet condensation and frost melt water retention

    N-(2,6-Dichloro­phen­yl)-5-methyl-1,2-oxazole-4-carboxamide monohydrate

    Get PDF
    In the title compound, C11H8Cl2N2O2·H2O, the dihedral angle between the benzene and isoxazole rings is 59.10 (7)°. In the crystal, the components are linked by N—H⋯O and O—H⋯O hydrogen bonds into a three-dimensional network. The crystal structure is further stabilized by π–π stacking inter­actions [centroid–centroid distance = 3.804 (2) Å]

    A Video-Based Augmented Reality System for Human-in-the-Loop Muscle Strength Assessment of Juvenile Dermatomyositis

    Get PDF
    As the most common idiopathic inflammatory myopathy in children, juvenile dermatomyositis (JDM) is characterized by skin rashes and muscle weakness. The childhood myositis assessment scale (CMAS) is commonly used to measure the degree of muscle involvement for diagnosis or rehabilitation monitoring. On the one hand, human diagnosis is not scalable and may be subject to personal bias. On the other hand, automatic action quality assessment (AQA) algorithms cannot guarantee 100% accuracy, making them not suitable for biomedical applications. As a solution, we propose a video-based augmented reality system for human-in-the-loop muscle strength assessment of children with JDM. We first propose an AQA algorithm for muscle strength assessment of JDM using contrastive regression trained by a JDM dataset. Our core insight is to visualize the AQA results as a virtual character facilitated by a 3D animation dataset, so that users can compare the real-world patient and the virtual character to understand and verify the AQA results. To allow effective comparisons, we propose a video-based augmented reality system. Given a feed, we adapt computer vision algorithms for scene understanding, evaluate the optimal way of augmenting the virtual character into the scene, and highlight important parts for effective human verification. The experimental results confirm the effectiveness of our AQA algorithm, and the results of the user study demonstrate that humans can more accurately and quickly assess the muscle strength of children using our system
    • …
    corecore