5,127 research outputs found

    Quantum criticality in disordered bosonic optical lattices

    Full text link
    Using the exact Bose-Fermi mapping, we study universal properties of ground-state density distributions and finite-temperature quantum critical behavior of one-dimensional hard-core bosons in trapped incommensurate optical lattices. Through the analysis of universal scaling relations in the quantum critical regime, we demonstrate that the superfluid to Bose glass transition and the general phase diagram of disordered hard-core bosons can be uniquely determined from finite-temperature density distributions of the trapped disordered system.Comment: 4 pages, 5 figure

    On one-sided filters for spectral Fourier approximations of discontinuous functions

    Get PDF
    The existence of one-sided filters, for spectral Fourier approximations of discontinuous functions, which can recover spectral accuracy up to discontinuity from one side, was proved. A least square procedure was also used to construct such a filter and test it on several discontinuous functions numerically

    Non-oscillatory spectral Fourier methods for shock wave calculations

    Get PDF
    A non-oscillatory spectral Fourier method is presented for the solution of hyperbolic partial differential equations. The method is based on adding a nonsmooth function to the trigonometric polynomials which are the usual basis functions for the Fourier method. The high accuracy away from the shock is enhanced by using filters. Numerical results confirm that no oscillations develop in the solution. Also, the accuracy of the spectral solution of the inviscid Burgers equation is shown to be higher than a fixed order

    Gravitational collapse of magnetized clouds II. The role of Ohmic dissipation

    Full text link
    We formulate the problem of magnetic field dissipation during the accretion phase of low-mass star formation, and we carry out the first step of an iterative solution procedure by assuming that the gas is in free-fall along radial field lines. This so-called ``kinematic approximation'' ignores the back reaction of the Lorentz force on the accretion flow. In quasi steady-state, and assuming the resistivity coefficient to be spatially uniform, the problem is analytically soluble in terms of Legendre's polynomials and confluent hypergeometric functions. The dissipation of the magnetic field occurs inside a region of radius inversely proportional to the mass of the central star (the ``Ohm radius''), where the magnetic field becomes asymptotically straight and uniform. In our solution, the magnetic flux problem of star formation is avoided because the magnetic flux dragged in the accreting protostar is always zero. Our results imply that the effective resistivity of the infalling gas must be higher by several orders of magnitude than the microscopic electric resistivity, to avoid conflict with measurements of paleomagnetism in meteorites and with the observed luminosity of regions of low-mass star formation.Comment: 20 pages, 4 figures, The Astrophysical Journal, in pres
    corecore