51,951 research outputs found

    Spin-injection Hall effect in a planar photovoltaic cell

    Full text link
    Successful incorporation of the spin degree of freedom in semiconductor technology requires the development of a new paradigm allowing for a scalable, non-destructive electrical detection of the spin-polarization of injected charge carriers as they propagate along the semiconducting channel. In this paper we report the observation of a spin-injection Hall effect (SIHE) which exploits the quantum-relativistic nature of spin-charge transport and which meets all these key requirements on the spin detection. The two-dimensional electron-hole gas photo-voltaic cell we designed to observe the SIHE allows us to develop a quantitative microscopic theory of the phenomenon and to demonstrate its direct application in optoelectronics. We report an experimental realization of a non-magnetic spin-photovoltaic effect via the SIHE, rendering our device an electrical polarimeter which directly converts the degree of circular polarization of light to a voltage signal.Comment: 14 pages, 4 figure

    Adaptive Thresholding for Sparse Covariance Matrix Estimation

    Get PDF
    In this paper we consider estimation of sparse covariance matrices and propose a thresholding procedure which is adaptive to the variability of individual entries. The estimators are fully data driven and enjoy excellent performance both theoretically and numerically. It is shown that the estimators adaptively achieve the optimal rate of convergence over a large class of sparse covariance matrices under the spectral norm. In contrast, the commonly used universal thresholding estimators are shown to be sub-optimal over the same parameter spaces. Support recovery is also discussed. The adaptive thresholding estimators are easy to implement. Numerical performance of the estimators is studied using both simulated and real data. Simulation results show that the adaptive thresholding estimators uniformly outperform the universal thresholding estimators. The method is also illustrated in an analysis on a dataset from a small round blue-cell tumors microarray experiment. A supplement to this paper which contains additional technical proofs is available online.Comment: To appear in Journal of the American Statistical Associatio

    P-Selectivity, Immunity, and the Power of One Bit

    Full text link
    We prove that P-sel, the class of all P-selective sets, is EXP-immune, but is not EXP/1-immune. That is, we prove that some infinite P-selective set has no infinite EXP-time subset, but we also prove that every infinite P-selective set has some infinite subset in EXP/1. Informally put, the immunity of P-sel is so fragile that it is pierced by a single bit of information. The above claims follow from broader results that we obtain about the immunity of the P-selective sets. In particular, we prove that for every recursive function f, P-sel is DTIME(f)-immune. Yet we also prove that P-sel is not \Pi_2^p/1-immune

    High-Fidelity Archeointensity Results for the Late Neolithic Period From Central China

    Get PDF
    Archeomagnetism focuses on exploring high-resolution variations of the geomagnetic field over hundreds to thousands of years. In this study, we carried out a comprehensive study of chronology, absolute and relative paleointensity on a late Neolithic site in central China. Ages of the samples are constrained to be ~3,500–3,000 BCE, a period when available paleointensity data are sparse. We present a total of 64 high-fidelity absolute paleointensities, demonstrating the field varied quickly from ~55 to ~90 ZAm2 between ~3,500–3,000 BCE. Our results record a new archeomagnetic jerk around 3,300 BCE, which is probably non-dipolar origin. The new results provide robust constraints on global geomagnetic models. We calculated a revised Chinese archeointensity reference curve for future application. The variations of absolute and relative paleointensity versus depth show good consistency, reinforcing the reliability of our results. This new attempt of combining absolute and relative paleointenstiy provides a useful tool for future archeomagnetic research

    A 2D systems approach to iterative learning control for discrete linear processes with zero Markov parameters

    No full text
    In this paper a new approach to iterative learning control for the practically relevant case of deterministic discrete linear plants with uniform rank greater than unity is developed. The analysis is undertaken in a 2D systems setting that, by using a strong form of stability for linear repetitive processes, allows simultaneous con-sideration of both trial-to-trial error convergence and along the trial performance, resulting in design algorithms that can be computed using Linear Matrix Inequalities (LMIs). Finally, the control laws are experimentally verified on a gantry robot that replicates a pick and place operation commonly found in a number of applications to which iterative learning control is applicable

    Phase-reference VLBI Observations of the Compact Steep-Spectrum Source 3C 138

    Full text link
    We investigate a phase-reference VLBI observation that was conducted at 15.4 GHz by fast switching VLBA antennas between the compact steep-spectrum radio source 3C 138 and the quasar PKS 0528+134 which are about 4∘^\circ away on the sky. By comparing the phase-reference mapping with the conventional hybrid mapping, we demonstrate the feasibility of high precision astrometric measurements for sources separated by 4∘^\circ. VLBI phase-reference mapping preserves the relative phase information, and thus provides an accurate relative position between 3C 138 and PKS 0528+134 of Δα=−9m46s.531000±0s.000003\Delta\alpha=-9^m46^s.531000\pm0^s.000003 and Δδ=3∘6′26′′.90311±0′′.00007\Delta\delta=3^\circ6^\prime26^{\prime\prime}.90311\pm0^{\prime\prime}.00007 (J2000.0) in right ascension and declination, respectively. This gives an improved position of the nucleus (component A) of 3C 138 in J2000.0 to be RA=05h21m9s.88574805^h 21^m 9^s.885748 and Dec=16∘38′22′′.0526116^\circ 38' 22''.05261 under the assumption that the position of calibrator PKS 0528+134 is correct. We further made a hybrid map by performing several iterations of CLEAN and self-calibration on the phase-referenced data with the phase-reference map as an input model for the first phase self-calibration. Compared with the hybrid map from the limited visibility data directly obtained from fringe fitting 3C 138 data, this map has a similar dynamic range, but a higher angular resolution. Therefore, phase-reference technique is not only a means of phase connection, but also a means of increasing phase coherence time allowing self-calibration technique to be applied to much weaker sources.Comment: 9 pages plus 2 figures, accepted by PASJ (Vol.58 No.6
    • …
    corecore