21 research outputs found

    Mapping Plant Functional Types over Broad Mountainous Regions: A Hierarchical Soft Time-Space Classification Applied to the Tibetan Plateau

    No full text
    Research on global climate change requires plant functional type (PFT) products. Although several PFT mapping procedures for remote sensing imagery are being used, none of them appears to be specifically designed to map and evaluate PFTs over broad mountainous areas which are highly relevant regions to identify and analyze the response of natural ecosystems. We present a methodology for generating soft classifications of PFTs from remotely sensed time series that are based on a hierarchical strategy by integrating time varying integrated NDVI and phenological information with topography: (i) Temporal variability: a Fourier transform of a vegetation index (MODIS NDVI, 2006 to 2010). (ii) Spatial partitioning: a primary image segmentation based on a small number of thresholds applied to the Fourier amplitude. (iii) Classification by a supervised soft classification step is based on a normalized distance metric constructed from a subset of Fourier coefficients and complimentary altitude data from a digital elevation model. Applicability and effectiveness is tested for the eastern Tibetan Plateau. A classification nomenclature is determined from temporally stable pixels in the MCD12Q1 time series. Overall accuracy statistics of the resulting classification reveal a gain of about 7% from 64.4% compared to 57.7% by the MODIS PFT products

    Causality of Biodiversity Loss: Climate, Vegetation, and Urbanization in China and America

    No full text
    Essential for directing conservation resources is to identify threatened vertebrate regions and diagnose the underlying causalities. Through relating vertebrates and threatened vertebrates to the rainfall-runoff chain, to the food chain, and to the human impact of urbanization, the following relationships are noticed: (i) The Earth’s vertebrates generally show increasing abundance and decreasing threatened species indicator (threatened species number/species abundance) for a higher Normalized Difference Vegetation Index (NDVI) or larger city-size. (ii) Regional vertebrates reveal a notable ‘U-shape profile’ (‘step-like jump’) of threatened species indicator occurs in the moderate (high) NDVI regions in China (America). (iii) Positive/green city states emerge in China and are characterized by the lowest threatened species indicators in areas of low to moderate greenness, where the greenness trend of change during the last 30 years is about three times higher in the urbanized areas than over land. (iv) Negative/brown city states emerge in America revealing high threatened species indicators for greenness exceeding NDVI > 0.2, where similar greenness trends are of both urbanized and land areas. The occurrence of green and brown city states suggests a biodiversity change pattern characterized by the threatened species indicator declining from city regimes with high to those with low indicator values for increasing ratio of the city-over-land NDVI trends

    Attribution and Causality Analyses of Regional Climate Variability

    No full text
    A two-step attribution and causality diagnostic is designed by employing singular spectrum analysis to unfold the attributed climate time series into a trajectory matrix and then subjected to an empirical orthogonal function analysis to identify the evolving driving forces, which can finally be related to major climate modes through their independent frequencies by wavelet analysis. Application results from the arid and drought-prone southern Intermountain region of North America are compared with the climate or larger scale forcing diagnosed from slow feature analysis using the sources of the water and energy flux balance. The following results are noted: (i) The changes between the subsequent four 20-year periods from 1930 to 2010 suggest predominantly climate-induced forcing by the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation. (ii) Land cover influences on the changing land cover are of considerably smaller magnitude (in terms of area percentage cover) whose time evolution is well documented from forestation documents. (iii) The drivers of the climate-induced forcings within the last 20 years are identified as the quasi-biennial oscillation and the El Niño–Southern Oscillation by both the inter-annual two-step attribution and the causality diagnostics with monthly scale-based slow feature analysis

    Temporal Stability of Vegetation Cover across the Loess Plateau Based on GIMMS during 1982–2013

    No full text
    The Loess Plateau, covering approximately 640,000 km2, has experienced the most severe soil erosion in the world. A greening tendency has been noticed since implementing the Grain to Green Program (GTGP), which may prevent further soil erosion. Therefore, understanding the underpinning basis of greening stability and persistence is important for sustainable improvement. Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index (NDVI) datasets for 1982–2013 were used to investigate the temporal stability and persistent time (PT) of vegetation over the Loess Plateau, utilizing the coefficient of variation (CV) and the estimation of tendencies of vegetation greening starting from the selected reference conditions. Two periods from 1982 to 1999 (as the reference period) and 2000 to 2013 were selected by considering the GTGP since 1999. The results indicate that: (1) A significant increase in vegetation cover occurred in the low NDVI area (NDVI < 0.3), with a high fluctuation from 2000 to 2013 compared with the reference period. Moreover, the fluctuation in vegetation is more related to precipitation variation since 1999. (2) Most areas recovered in the greening trend of the first period starting in 2009, occurring in 28.7% (2628 of 9148) of the total area. (3) The revegetated areas have a low PT and a high CVvi, that is, the revegetated areas need a long time to recover from disturbances. Therefore, we identify the sensitive areas with PT = 4; further management needs to be implemented for sustainable development in these areas. These results provide a method to quantify the stability and persistence of the complex interactions between vegetation greenness and environmental changes, particularly in fragile areas

    Mapping Plant Functional Types over Broad Mountainous Regions: A Hierarchical Soft Time-Space Classification Applied to the Tibetan Plateau

    No full text
    Research on global climate change requires plant functional type (PFT) products. Although several PFT mapping procedures for remote sensing imagery are being used, none of them appears to be specifically designed to map and evaluate PFTs over broad mountainous areas which are highly relevant regions to identify and analyze the response of natural ecosystems. We present a methodology for generating soft classifications of PFTs from remotely sensed time series that are based on a hierarchical strategy by integrating time varying integrated NDVI and phenological information with topography: (i) Temporal variability: a Fourier transform of a vegetation index (MODIS NDVI, 2006 to 2010). (ii) Spatial partitioning: a primary image segmentation based on a small number of thresholds applied to the Fourier amplitude. (iii) Classification by a supervised soft classification step is based on a normalized distance metric constructed from a subset of Fourier coefficients and complimentary altitude data from a digital elevation model. Applicability and effectiveness is tested for the eastern Tibetan Plateau. A classification nomenclature is determined from temporally stable pixels in the MCD12Q1 time series. Overall accuracy statistics of the resulting classification reveal a gain of about 7% from 64.4% compared to 57.7% by the MODIS PFT products

    Effect of the Long-Term Mean and the Temporal Stability of Water-Energy Dynamics on China’s Terrestrial Species Richness

    No full text
    Water-energy dynamics broadly regulate species richness gradients but are being altered by climate change and anthropogenic activities; however, the current methods used to quantify this phenomenon overlook the non-linear dynamics of climatic time-series data. To analyze the gradient of species richness in China using water-energy dynamics, this study used linear regression to examine how species richness is related to (1) the long-term mean of evapotranspiration (ET) and potential evapotranspiration (PET) and (2) the temporal stability of ET and PET. ET and PET were used to represent the water-energy dynamics of the terrestrial area. Changes in water-energy dynamics over the 14-year period (2000 to 2013) were also analyzed. The long-term mean of ET was strong and positively ( R 2 ∈ ( 0.40 ~ 0.67 ) , p < 0.05 ) correlated with the species richness gradients. Regions in which changes in land cover have occurred over the 14-year period (2000 to 2013) were detected from long-term trends. The high level of species richness in all groups (birds, mammals, and amphibians) was associated with relatively high ET, determinism (i.e., predictability), and entropy (i.e., complexity). ET, rather than PET or temporal stability measures, was an effective proxy of species richness in regions of China that had moderate energy (PET > 1000 mm/year), especially for amphibians. In addition, predictions of species richness were improved by incorporating information on the temporal stability of ET with long-term means. Amphibians are more sensitive to the long-term ET mean than other groups due to their unique physiological requirements and evolutionary processes. Our results confirmed that ET and PET were strongly and significantly correlated with climatic and anthropogenic induced changes, providing useful information for conservation planning. Therefore, climate management based on changes to water-energy dynamics via land management practices, including reforestation, should be considered when planning methods to conserve natural resources to protect biodiversity

    Examining the Influence of Crop Residue Burning on Local PM2.5 Concentrations in Heilongjiang Province Using Ground Observation and Remote Sensing Data

    No full text
    Although a many studies concerning crop residue burning have been conducted, the influence of crop residue burning on local PM2.5 concentrations remains unclear. The number of crop residue burning spots was the highest in Heilongjiang province and we extracted crop residue burning spots for this region using MOD14A1 (Thermal Anomalies & Fire Daily L3 Global 1 km) data and national land cover data. By analyzing the temporal variation of crop residue burning and PM2.5 concentrations in Heilongjiang province, we found that the total number of crop residue burning spots was not correlated with the variations of PM2.5 concentrations at a provincial (regional) scale. However, crop residue burning exerted notable influence on the variations of PM2.5 concentrations at a local scale. We experimented with a set of buffer zone radiuses to examine the influencing area of crop residue burning. The results suggest that the valid influencing area of crop residue burning was between 50 and 80 km. The mean PM2.5 concentration measured at stations close to crop residue burning spots was more than 60 μg/m3 higher than that measured at stations not close to crop residue burning spots. However, no consistent, significant correlation existed between the existence of crop residue burning spots and local PM2.5 concentrations, indicating that local PM2.5 concentrations were influenced by a diversity of factors and not solely controlled by crop residue burning. This research also provides suggestions for better understanding the role of crop residue burning in local and regional air pollution
    corecore