4,745 research outputs found
Recommended from our members
Lignin-Based Polyurethanes from Unmodified Kraft Lignin Fractionated by Sequential Precipitation
Recommended from our members
CELF significantly reduces milling requirements and improves soaking effectiveness for maximum sugar recovery of Alamo switchgrass over dilute sulfuric acid pretreatment
BackgroundPretreatment is effective in reducing the natural recalcitrance of plant biomass so polysaccharides in cell walls can be accessed for conversion to sugars. Furthermore, lignocellulosic biomass must typically be reduced in size to increase the pretreatment effectiveness and realize high sugar yields. However, biomass size reduction is a very energy-intensive operation and contributes significantly to the overall capital cost.ResultsIn this study, the effect of particle size reduction and biomass presoaking on the deconstruction of Alamo switchgrass was examined prior to pretreatment by dilute sulfuric acid (DSA) and Co-solvent Enhanced Lignocellulosic Fractionation (CELF) at pretreatment conditions optimized for maximum sugar release by each pretreatment coupled with subsequent enzymatic hydrolysis. Sugar yields by enzymatic hydrolysis were measured over a range of enzyme loadings. In general, DSA successfully solubilized hemicellulose, while CELF removed nearly 80% of Klason lignin from switchgrass in addition to the majority of hemicellulose. Presoaking and particle size reduction did not have a significant impact on biomass compositions after pretreatment for both DSA and CELF. However, presoaking for 4 h slightly increased sugar yields by enzymatic hydrolysis of DSA-pretreated switchgrass compared to unsoaked samples, whereas sugar yields from enzymatic hydrolysis of CELF solids continued to increase substantially for up to 18 h of presoaking time. Of particular importance, DSA required particle size reduction by knife milling to < 2 mm in order to achieve adequate sugar yields by subsequent enzymatic hydrolysis. CELF solids, on the other hand, realized nearly identical sugar yields from unmilled and milled switchgrass even at very low enzyme loadings.ConclusionsCELF was capable of achieving nearly theoretical sugar yields from enzymatic hydrolysis of pretreated switchgrass solids without size reduction, unlike DSA. These results indicate that CELF may be able to eliminate particle size reduction prior to pretreatment and thereby reduce overall costs of biological processing of biomass to fuels. In addition, presoaking proved much more effective for CELF than for DSA, particularly at low enzyme loadings
What Drives Fixed Asset Holding and Risk-Adjusted Performance of Corporate in China? An Empirical Analysis
This paper attempts to shed light on the over-investment debate by investigating listed firms in China. Firms with higher level of fixed asset holding, higher level of overhead expenses, and being covered by the tax-favor policy in China are found to be associated with a lower risk-adjusted performance. In addition, the tax-favor policy itself encourages fixed asset investment. In contrast to some of the previous literature, state-ownership of firms, dividend policy, and ownership concentration are not robust predictors of risk-adjusted performance, and debt level, managerial shareholding, and profit per unit of asset are not robust predictors of fixed asset investment.fixed asset holding, corporate real estate, over-investment theory, state-ownership, tax-favor policy
Branching ratios and direct CP asymmetries in decays
We propose a theoretical framework for analyzing two-body nonleptonic
meson decays, based on the factorization of short-distance (long-distance)
dynamics into Wilson coefficients (hadronic matrix elements of four-fermion
operators). The parametrization of hadronic matrix elements in terms of several
nonperturbative quantities is demonstrated for the decays,
denoting a pseudoscalar meson. We consider the evolution of Wilson coefficients
with energy release in individual decay modes, and the Glauber strong phase
associated with the pion in nonfactorizable annihilation amplitudes, that is
attributed to the unique role of the pion as a Nambu-Goldstone boson and a
quark-anti-quark bound state simultaneously. The above inputs improve the
global fit to the branching ratios involving the meson, and resolves
the long-standing puzzle from the and
branching ratios, respectively. Combining short-distance dynamics associated
with penguin operators and the hadronic parameters determined from the global
fit to branching ratios, we predict direct CP asymmetries, to which the quark
loops and the scalar penguin annihilation give dominant contributions. In
particular, we predict , lower than the LHCb and CDF data.Comment: 17 pages, 3 figures, matches published versio
What can we learn from decays?
We investigate the decays under the
factorization scheme and find many discrepancies between theoretical
predictions and the experimental data. In the tree dominated processes, large
contributions from color-suppressed tree diagrams are required in order to
accommodate with the large decay rates of and . For decays which are both induced
by transition, theoretical predictions on their decay rates are larger
than the data by a factor of 2.8 and 5.5, respectively. Large electro-weak
penguins or some new mechanism are expected to explain the branching ratios of
and . The
soft-collinear-effective-theory has the potential to explain large decay rates
of and via a large hard-scattering form
factor . We will also show that, with proper charming
penguins, predictions on the branching ratios of can also be consistent with the data.Comment: 16 pages, no figur
A new partition of unity finite element free from the linear dependence problem and possessing the delta property
Partition-of-unity based finite element methods (PUFEMs) have appealing capabilities for p-adaptivity and local refinement with minimal or even no remeshing of the problem domain. However, PUFEMs suffer from a number of problems that practically limit their application, namely the linear dependence (LD) problem, which leads to a singular global stiffness matrix, and the difficulty with which essential boundary conditions can be imposed due to the lack of the Kronecker delta property. In this paper we develop a new PU-based triangular element using a dual local approximation scheme by treating boundary and interior nodes separately. The present method is free from the LD problem and essential boundary conditions can be applied directly as in the FEM. The formulation uses triangular elements, however the essential idea is readily extendable to other types of meshed or meshless formulation based on a PU approximation. The computational cost of the present method is comparable to other PUFEM elements described in the literature. The proposed method can be simply understood as a PUFEM with composite shape functions possessing the delta property and appropriate compatibility
Recommended from our members
Synthesis, Characterization, and Utilization of a Lignin-Based Adsorbent for Effective Removal of Azo Dye from Aqueous Solution
How to effectively remove toxic dyes from the industrial wastewater using a green low-cost lignocellulose-based adsorbent, such as lignin, has become a topic of great interest but remains quite challenging. In this study, cosolvent-enhanced lignocellulosic fractionation (CELF) pretreatment and Mannich reaction were combined to generate an aminated CELF lignin which is subsequently applied for removal of methylene blue and direct blue (DB) 1 dye from aqueous solution. 31P NMR was used to track the degree of amination, and an orthogonal design was applied to determine the relationship between the extent of amination and reaction parameters. The physicochemical, morphological, and thermal properties of the aminated CELF lignin were characterized to confirm the successful grafting of diethylenetriamine onto the lignin. The aminated CELF lignin proved to be an effective azo dye-adsorbent, demonstrating considerably enhanced dye decolorization, especially toward DB 1 dye (>90%). It had a maximum adsorption capacity of DB 1 dye of 502.7 mg/g, and the kinetic study suggested the adsorption process conformed to a pseudo-second-order kinetic model. The isotherm results also showed that the modified lignin-based adsorbent exhibited monolayer adsorption. The adsorbent properties were mainly attributed to the incorporated amine functionalities as well as the increased specific surface area of the aminated CELF lignin
Simulation of phosphorus implantation into silicon with a single-parameter electronic stopping power model
We simulate dopant profiles for phosphorus implantation into silicon using a
new model for electronic stopping power. In this model, the electronic stopping
power is factorized into a globally averaged effective charge Z1*, and a local
charge density dependent electronic stopping power for a proton. There is only
a single adjustable parameter in the model, namely the one electron radius rs0
which controls Z1*. By fine tuning this parameter, we obtain excellent
agreement between simulated dopant profiles and the SIMS data over a wide range
of energies for the channeling case. Our work provides a further example of
implant species, in addition to boron and arsenic, to verify the validity of
the electronic stopping power model and to illustrate its generality for
studies of physical processes involving electronic stopping.Comment: 11 pages, 7 figures. See http://bifrost.lanl.gov/~reed
Recommended from our members
A Multifunctional Cosolvent Pair Reveals Molecular Principles of Biomass Deconstruction
- …