833 research outputs found
Atom detection in a two-mode optical cavity with intermediate coupling: Autocorrelation studies
We use an optical cavity in the regime of intermediate coupling between atom
and cavity mode to detect single moving atoms. Degenerate polarization modes
allow excitation of the atoms in one mode and collection of spontaneous
emission in the other, while keeping separate the two sources of light; we
obtain a higher confidence and efficiency of detection by adding
cavity-enhanced Faraday rotation. Both methods greatly benefit from coincidence
detection of photons, attaining fidelities in excess of 99% in less than 1
microsecond. Detailed studies of the second-order intensity autocorrelation
function of light from the signal mode reveal evidence of antibunched photon
emissions and the dynamics of single-atom transits.Comment: 10 pages, 10 figures, to be published in Phys. Rev.
Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound
Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr-1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation
Effective Compile-Time Analysis for Data Prefetching In Java
The memory hierarchy in modern architectures continues to be a major performance bottleneck. Many existing techniques for improving memory performance focus on Fortran and C programs, but memory latency is also a barrier to achieving high performance in object-oriented languages. Existing software techniques are inadequate for exposing optimization opportunities in object-oriented programs. One key problem is the use of high-level programming abstractions which make analysis difficult. Another challenge is that programmers use a variety of data structures, including arrays and linked structures, so optimizations must work on a broad range of programs. We develop a new unified data-flow analysis for identifying accesses to arrays and linked structures called recurrence analysis. Prior approaches that identify these access patterns are ad hoc, or treat arrays and linked structures independently. The data-flow analysis is intra- and inter-procedural, which is important in Java programs that use encapsulation to hide implementation details. We sho
The pursuit of isotopic and molecular fire tracers in the polar atmosphere and cryosphere
We present an overview of recent multidisciplinary, multi-institutional efforts to identify and date major sources of combustion aerosol in the current and paleoatmospheres. The work was stimulated, in part, by an atmospheric particle \u27sample of opportunity\u27 collected at Summit, Greenland in August 1994, that bore the 14C imprint of biomass burning. During the summer field seasons of 1995 and 1996, we collected air filter, surface snow and snowpit samples to investigate chemical and isotopic evidence of combustion particles that had been transported from distant fires. Among the chemical tracers employed for source identification are organic acids, potassium and ammonium ions, and elemental and organic components of carbonaceous particles. Ion chromatography, performed by members of the Climate Change Research Center (University of New Hampshire), has been especially valuable in indicating periods at Summit that were likely to have been affected by the long range transport of biomass burning aerosol. Univariate and multivariate patterns of the ion concentrations in the snow and ice pinpointed surface and snowpit samples for the direct analysis of particulate (soot) carbon and carbon isotopes. The research at NIST is focusing on graphitic and polycyclic aromatic carbon, which serve as almost certain indicators of fire, and measurements of carbon isotopes, especially 14C, to distinguish fossil and biomass combustion sources. Complementing the chemical and isotopic record, are direct \u27visual\u27 (satellite imagery) records and less direct backtrajectory records, to indicate geographic source regions and transport paths. In this paper we illustrate the unique way in which the synthesis of the chemical, isotopic, satellite and trajectory data enhances our ability to develop the recent history of the formation and transport of soot deposited in the polar snow and ice
Chromosome Organization in Meiosis
Our objective is to understand the mechanics of homologous chromosome pairing during meiosis. Aberrant pairing can result in nondisjunction and birth defects in humans.
This study used yeast, Saccharomyces cerevisiae, with chromosomally‐integrated arrays of tetO operators that bind TetR repressor proteins fused to GFP to produce a fluorescent signal. In diploid cells, the tetO/TetR‐GFP system allows homologous chromosomes to be identified as two foci (unpaired) or one focus (paired) as they progress through meiosis. We conducted three replicate
timecourse experiments, analysing three different stages of meiosis, t=0 hours: pre‐meiotic, t=3 hours: pairing transition, and t=5 hours: synapsis. At each stage, the cells were imaged for 25 minutes, with z‐stacks taken at 30 second intervals. To analyse individual cells, we developed a 4D image analysis pipeline in MATLAB that allowed us to calculate the mean squared change in distance (MSCD), a metric describing the distance between two foci, and analyse deviations from normal diffusive motion
ORM Expression Alters Sphingolipid Homeostasis and Differentially Affects Ceramide Synthase Activity
Sphingolipid synthesis is tightly regulated in eukaryotes. This regulation in plants ensures sufficient sphingolipids to support growth while limiting the accumulation of sphingolipid metabolites that induce programmed cell death. Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis and is considered the primary sphingolipid homeostatic regulatory point. In this report, Arabidopsis (Arabidopsis thaliana) putative SPT regulatory proteins, orosomucoidlike proteins AtORM1 and AtORM2, were found to interact physically with Arabidopsis SPT and to suppress SPT activity when coexpressed with Arabidopsis SPT subunits long-chain base1 (LCB1) and LCB2 and the small subunit of SPT in a yeast (Saccharomyces cerevisiae) SPT-deficient mutant. Consistent with a role in SPT suppression, AtORM1 and AtORM2 overexpression lines displayed increased resistance to the programmed cell death-inducing mycotoxin fumonisin B1, with an accompanying reduced accumulation of LCBs and C16 fatty acid-containing ceramides relative to wild-type plants. Conversely, RNA interference (RNAi) suppression lines of AtORM1 and AtORM2 displayed increased sensitivity to fumonisin B1 and an accompanying strong increase in LCBs and C16 fatty acid-containing ceramides relative to wild-type plants. Overexpression lines also were found to have reduced activity of the class I ceramide synthase that uses C16 fatty acid acyl-coenzyme A and dihydroxy LCB substrates but increased activity of class II ceramide synthases that use very-long-chain fatty acyl-coenzyme A and trihydroxy LCB substrates. RNAi suppression lines, in contrast, displayed increased class I ceramide synthase activity but reduced class II ceramide synthase activity. These findings indicate that ORM mediation of SPT activity differentially regulates functionally distinct ceramide synthase activities as part of a broader sphingolipid homeostatic regulatory network
Attitudes about Addiction: A National Study of Addiction Educators
The following study, funded by the National Institute of Drug Abuse (NIDA), utilized the Addiction Belief Inventory (ABI; Luke, Ribisl, Walton, & Davidson, 2002) to examine addiction attitudes in a national sample of U.S. college/university faculty teaching addiction-specific courses (n = 215). Results suggest that addiction educators view substance abuse as a coping mechanism rather than a moral failure, and are ambivalent about calling substance abuse or addiction a disease. Most do not support individual efficacy toward recovery, the ability to control use, or social use after treatment. Modifiers of addiction educator attitudes include level of college education; teaching experience; licensure/certification, and whether the educator is an addiction researcher. Study implications, limitations, and directions for future research are discussed
Sediment transport-based metrics of wetland stability
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7992–8000, doi:10.1002/2015GL065980.Despite the importance of sediment availability on wetland stability, vulnerability assessments seldom consider spatiotemporal variability of sediment transport. Models predict that the maximum rate of sea level rise a marsh can survive is proportional to suspended sediment concentration (SSC) and accretion. In contrast, we find that SSC and accretion are higher in an unstable marsh than in an adjacent stable marsh, suggesting that these metrics cannot describe wetland vulnerability. Therefore, we propose the flood/ebb SSC differential and organic-inorganic suspended sediment ratio as better vulnerability metrics. The unstable marsh favors sediment export (18 mg L−1 higher on ebb tides), while the stable marsh imports sediment (12 mg L−1 higher on flood tides). The organic-inorganic SSC ratio is 84% higher in the unstable marsh, and stable isotopes indicate a source consistent with marsh-derived material. These simple metrics scale with sediment fluxes, integrate spatiotemporal variability, and indicate sediment sources.U.S. Geological Survey Coastal and Marine Geology Program; Global Change and Land Use Progra
CRISPR/Cas9-Induced fad2 and rod1 Mutations Stacked With fae1 Confer High Oleic Acid Seed Oil in Pennycress (Thlaspi arvense L.)
Pennycress (Thlaspi arvense L.) is being domesticated as an oilseed cash cover crop to be grown in the off-season throughout temperate regions of the world. With its diploid genome and ease of directed mutagenesis using molecular approaches, pennycress seed oil composition can be rapidly tailored for a plethora of food, feed, oleochemical and fuel uses. Here, we utilized Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology to produce knockout mutations in the FATTY ACID DESATURASE2 (FAD2) and REDUCED OLEATE DESATURATION1 (ROD1) genes to increase oleic acid content. High oleic acid (18:1) oil is valued for its oxidative stability that is superior to the polyunsaturated fatty acids (PUFAs) linoleic (18:2) and linolenic (18:3), and better cold flow properties than the very long chain fatty acid (VLCFA) erucic (22:1). When combined with a FATTY ACID ELONGATION1 (fae1) knockout mutation, fad2 fae1 and rod1 fae1 double mutants produced ∼90% and ∼60% oleic acid in seed oil, respectively, with PUFAs in fad2 fae1 as well as fad2 single mutants reduced to less than 5%. MALDI-MS spatial imaging analyses of phosphatidylcholine (PC) and triacylglycerol (TAG) molecular species in wild-type pennycress embryo sections from mature seeds revealed that erucic acid is highly enriched in cotyledons which serve as storage organs, suggestive of a role in providing energy for the germinating seedling. In contrast, PUFA-containing TAGs are enriched in the embryonic axis, which may be utilized for cellular membrane expansion during seed germination and seedling emergence. Under standard growth chamber conditions, rod1 fae1 plants grew like wild type whereas fad2 single and fad2 fae1 double mutant plants exhibited delayed growth and overall reduced heights and seed yields, suggesting that reducing PUFAs below a threshold in pennycress had negative physiological effects. Taken together, our results suggest that combinatorial knockout of ROD1 and FAE1 may be a viable route to commercially increase oleic acid content in pennycress seed oil whereas mutations in FAD2 will likely require at least partial function to avoid fitness trade-offs
Production of tocotrienols in seeds of cotton (Gossypium hirsutum L.) enhances oxidative stability and offers nutraceutical potential
Upland cotton (Gossypium hirsutum L.) is an economically important multi-purpose crop cultivated globally for fibre, seed oil and protein. Cottonseed oil also is naturally rich in vitamin E components (collectively known as tocochromanols), with a- and c-tocopherols comprising nearly all of the vitamin E components. By contrast, cottonseeds have little or no tocotrienols, tocochromanols with a wide range of health benefits. Here, we generated transgenic cotton lines expressing the barley (Hordeum vulgare) homogentisate geranylgeranyl transferase coding sequence under the control of the Brassica napus seed-specific promoter, napin. Transgenic cottonseeds had ~twofold to threefold increases in the accumulation of total vitamin E (tocopherols + tocotrienols), with more than 60% c-tocotrienol. Matrix assisted laser desorption ionization-mass spectrometry imaging showed that c-tocotrienol was localized throughout the transgenic embryos. In contrast, the native tocopherols were distributed unequally in both transgenic and non-transgenic embryos. a- Tocopherol was restricted mostly to cotyledon tissues and c-tocopherol was more enriched in the embryonic axis tissues. Production of tocotrienols in cotton embryos had no negative impact on plant performance or yield of other important seed constituents including fibre, oil and protein. Advanced generations of two transgenic events were field grown, and extracts of transgenic seeds showed increased antioxidant activity relative to extracts from non-transgenic seeds. Furthermore, refined cottonseed oil from the two transgenic events showed 30% improvement in oxidative stability relative to the non-transgenic cottonseed oil. Taken together, these materials may provide new opportunities for cottonseed co-products with enhanced vitamin E profile for improved shelf life and nutrition
- …