4,926 research outputs found

    Is the Inflation-Output Nexus Asymmetric in the Euro Area?

    Get PDF
    This paper challenges the assumption that the inflation process within the euro area is well-described by a linear Phillips curve and investigates in a nonparametric framework how inflation is sensitive to output growth. An asymmetric output-inflation trade-off is pointed out in the euro area at both aggregated and individual country levels.Nonlinear Phillips curve ; Price stability ; Kernel smoothing.

    Phase-ordering of conserved vectorial systems with field-dependent mobility

    Full text link
    The dynamics of phase-separation in conserved systems with an O(N) continuous symmetry is investigated in the presence of an order parameter dependent mobility M(\phi)=1-a \phi^2. The model is studied analytically in the framework of the large-N approximation and by numerical simulations of the N=2, N=3 and N=4 cases in d=2, for both critical and off-critical quenches. We show the existence of a new universality class for a=1 characterized by a growth law of the typical length L(t) ~ t^{1/z} with dynamical exponent z=6 as opposed to the usual value z=4 which is recovered for a<1.Comment: RevTeX, 8 pages, 13 figures, to be published in Phys. Rev.

    Laparoscopic Assisted Fusion of the Lumbosacral Spine: A Biomechanical and Histologic Analysis of the Open Versus Laparoscopic Technique in an Animal Model

    Get PDF
    Study Design. An animal model for laparoscopic lumbosacral fusion. Objectives. To compare the biomechanical and histologic results of open to laparoscopic lumbosacral discectomy and fusion in an animal model. Background Data. Early clinical reports of laparoscopic lumbosacral fusions are encouraging, but animal experiments have not been reported. Methods. Ten pigs (50-80 kg) were divided into two groups. Group 1 underwent an open anterior lumbosacral discectomy and fusion at L7-S1 using autologous bone graft and a titanium MOSS (DePuy Motech) cage. Group 2 was identical to Group 1 except that a laparoscopic technique was used. The animals were killed at 3 months, and the lumbosacral spines were harvested for biomechanical and histologic testing. Results. Estimated blood loss and average length of operation, respectively, for the two groups were: Group 1, 50 mL, 2 hours 50 minutes; and Group 2, 40 mL, 3 hours 40 minutes. There were no perioperative or postoperative complications in either group. Motion analysis results showed less motion in lateral bending, flexion, and extension than in the intact specimen in both groups. Tensile testing showed that the stiffness was significantly greater in the open group than in the laparoscopic group (P \u3c 0.004). Histologic examination showed a less extensive discectomy and less bone growth in the implant in the laparoscopic group. Inadequate decortication of end-plates occurred in two animals who underwent laparoscopy. Conclusions. Although lumbosacral discectomy and implant insertion can be performed using the laparoscopic technique, the construct may not have the same biomechanical strength as that attained with the open procedure. Laparoscopic-assisted lumbosacral fusion surgery requires additional investigation before it is widely used in clinical situations

    Phase Segregation Dynamics in Particle Systems with Long Range Interactions I: Macroscopic Limits

    Full text link
    We present and discuss the derivation of a nonlinear non-local integro-differential equation for the macroscopic time evolution of the conserved order parameter of a binary alloy undergoing phase segregation. Our model is a d-dimensional lattice gas evolving via Kawasaki exchange dynamics, i.e. a (Poisson) nearest-neighbor exchange process, reversible with respect to the Gibbs measure for a Hamiltonian which includes both short range (local) and long range (nonlocal) interactions. A rigorous derivation is presented in the case in which there is no local interaction. In a subsequent paper (part II), we discuss the phase segregation phenomena in the model. In particular we argue that the phase boundary evolutions, arising as sharp interface limits of the family of equations derived in this paper, are the same as the ones obtained from the corresponding limits for the Cahn-Hilliard equation.Comment: amstex with macros (included in the file), tex twice, 20 page

    Suzaku Reveals Helium-burning Products in the X-ray Emitting Planetary Nebula BD+303639

    Get PDF
    BD+303639, the brightest planetary nebula at X-ray energies, was observed with Suzaku, an X-ray observatory launched on 2005 July 10. Using the X-ray Imaging Spectrometer, the K-lines from C VI, O VII, and O VIII were resolved for the first time, and C/O, N/O, and Ne/O abundance ratios determined. The C/O and Ne/O abundance ratios exceed the solar value by a factor of at least 30 and 5, respectively. These results indicate that the X-rays are emitted mainly by helium shell-burning products.Comment: 12 pages, 4 figures, accepted for publication in The Astrophysical Journal Letter

    Bubbles and Filaments: Stirring a Cahn-Hilliard Fluid

    Get PDF
    The advective Cahn-Hilliard equation describes the competing processes of stirring and separation in a two-phase fluid. Intuition suggests that bubbles will form on a certain scale, and previous studies of Cahn-Hilliard dynamics seem to suggest the presence of one dominant length scale. However, the Cahn-Hilliard phase-separation mechanism contains a hyperdiffusion term and we show that, by stirring the mixture at a sufficiently large amplitude, we excite the diffusion and overwhelm the segregation to create a homogeneous liquid. At intermediate amplitudes we see regions of bubbles coexisting with regions of hyperdiffusive filaments. Thus, the problem possesses two dominant length scales, associated with the bubbles and filaments. For simplicity, we use use a chaotic flow that mimics turbulent stirring at large Prandtl number. We compare our results with the case of variable mobility, in which growth of bubble size is dominated by interfacial rather than bulk effects, and find qualitatively similar results.Comment: 20 pages, 27 figures. RevTeX

    Physical Structure of Planetary Nebulae. I. The Owl Nebula

    Full text link
    The Owl Nebula is a triple-shell planetary nebula with the outermost shell being a faint bow-shaped halo. We have obtained deep narrow-band images and high-dispersion echelle spectra in the H-alpha, [O III], and [N II] emission lines to determine the physical structure of each shell in the nebula. These spatio-kinematic data allow us to rule out hydrodynamic models that can reproduce only the nebular morphology. Our analysis shows that the inner shell of the main nebula is slightly elongated with a bipolar cavity along its major axis, the outer nebula is a filled envelope co-expanding with the inner shell at 40 km/s, and the halo has been braked by the interstellar medium as the Owl Nebula moves through it. To explain the morphology and kinematics of the Owl Nebula, we suggest the following scenario for its formation and evolution. The early mass loss at the TP-AGB phase forms the halo, and the superwind at the end of the AGB phase forms the main nebula. The subsequent fast stellar wind compressed the superwind to form the inner shell and excavated an elongated cavity at the center, but has ceased in the past. At the current old age, the inner shell is backfilling the central cavity.Comment: 10 pages, 6 figures, 1 table, to appear in the Astronomical Journa

    Recombination Line vs. Forbidden Line Abundances in Planetary Nebulae

    Full text link
    Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs) have been found to give abundances that are much larger in some cases than abundances from collisionally-excited forbidden lines (CELs). The origins of this abundance discrepancy are highly debated. We present new spectroscopic observations of O II and C II recombination lines for six planetary nebulae. With these data we compare the abundances derived from the optical recombination lines with those determined from collisionally-excited lines. Combining our new data with published results on RLs in other PNs, we examine the discrepancy in abundances derived from RLs and CELs. We find that there is a wide range in the measured abundance discrepancy Delta(O+2) = log O+2(RL) - log O+2(CEL), ranging from approximately 0.1 dex up to 1.4 dex. Most RLs yield similar abundances, with the notable exception of O II multiplet V15, known to arise primarily from dielectronic recombination, which gives abundances averaging 0.6 dex higher than other O II RLs. We compare Delta(O+2) against a variety of physical properties of the PNs to look for clues as to the mechanism responsible for the abundance discrepancy. The strongest correlations are found with the nebula diameter and the Balmer surface brightness. An inverse correlation of Delta(O+2) with nebular density is also seen. Similar results are found for carbon in comparing C II RL abundances with ultraviolet measurements of C III].Comment: 48 pages, 14 figures, accepted for publication in the Astrophysical Journal Supplemen

    Condensation vs. phase-ordering in the dynamics of first order transitions

    Full text link
    The origin of the non commutativity of the limits tt \to \infty and NN \to \infty in the dynamics of first order transitions is investigated. In the large-N model, i.e. NN \to \infty taken first, the low temperature phase is characterized by condensation of the large wave length fluctuations rather than by genuine phase-ordering as when tt \to \infty is taken first. A detailed study of the scaling properties of the structure factor in the large-N model is carried out for quenches above, at and below T_c. Preasymptotic scaling is found and crossover phenomena are related to the existence of components in the order parameter with different scaling properties. Implications for phase-ordering in realistic systems are discussed.Comment: 15 pages, 13 figures. To be published in Phys. Rev.
    corecore