4,423 research outputs found

    Synthetic Quantum Systems

    Get PDF
    So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the new notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a stochastic neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is an information theory of reality in which space and quantum phenomena are emergent, and so indicates the deep origins of quantum phenomena. Analogous complex stochastic dynamical systems have recently been proposed within neurobiology to deal with the emergent complexity of biosystems, particularly the biodynamics of higher brain function. The reasons for analogous discoveries in fundamental physics and neurobiology are discussed.Comment: 16 pages, Latex, 1 eps figure fil

    Can a Logarithmically Running Coupling Mimic a String Tension?

    Full text link
    It is shown that a Coulomb potential using a running coupling slightly modified from the perturbative form can produce an interquark potential that appears nearly linear over a large distance range. Recent high-statistics SU(2) lattice gauge theory data fit well to this potential without the need for a linear string-tension term. This calls into question the accuracy of string tension measurements which are based on the assumption of a constant coefficient for the Coulomb term. It also opens up the possibility of obtaining an effectively confining potential from gluon exchange alone.Comment: 13 pages, LaTeX, two figures not included, available from author. revision - Line lengths fixed so it will tex properl

    Hydrogen atom in phase space. The Kirkwood-Rihaczek representation

    Get PDF
    We present a phase-space representation of the hydrogen atom using the Kirkwood-Rikaczek distribution function. This distribution allows us to obtain analytical results, which is quite unique because an exact analytical form of the Wigner functions corresponding to the atom states is not known. We show how the Kirkwood-Rihaczek distribution reflects properties of the hydrogen atom wave functions in position and momentum representations.Comment: 5 pages (and 5 figures

    Nonperturbative aspects of the quark-photon vertex

    Get PDF
    The electromagnetic interaction with quarks is investigated through a relativistic, electromagnetic gauge-invariant treatment. Gluon dressing of the quark-photon vertex and the quark self-energy functions is described by the inhomogeneous Bethe-Salpeter equation in the ladder approximation and the Schwinger-Dyson equation in the rainbow approximation respectively. Results for the calculation of the quark-photon vertex are presented in both the time-like and space-like regions of photon momentum squared, however emphasis is placed on the space-like region relevant to electron scattering. The treatment presented here simultaneously addresses the role of dynamically generated qqˉq\bar{q} vector bound states and the approach to asymptotic behavior. The resulting description is therefore applicable over the entire range of momentum transfers available in electron scattering experiments. Input parameters are limited to the model gluon two-point function, which is chosen to reflect confinement and asymptotic freedom, and are largely constrained by the obtained bound-state spectrum.Comment: 8 figures available on request by email, 25 pages, Revtex, DOE/ER/40561-131-INT94-00-5

    Remote state preparation and teleportation in phase space

    Full text link
    Continuous variable remote state preparation and teleportation are analyzed using Wigner functions in phase space. We suggest a remote squeezed state preparation scheme between two parties sharing an entangled twin beam, where homodyne detection on one beam is used as a conditional source of squeezing for the other beam. The scheme works also with noisy measurements, and provide squeezing if the homodyne quantum efficiency is larger than 50%. Phase space approach is shown to provide a convenient framework to describe teleportation as a generalized conditional measurement, and to evaluate relevant degrading effects, such the finite amount of entanglement, the losses along the line, and the nonunit quantum efficiency at the sender location.Comment: 2 figures, revised version to appear in J.Opt.

    Squeezed gluon vacuum and the global colour model of QCD

    Get PDF
    We discuss how the vacuum model of Celenza and Shakin with a squeezed gluon condensate can explain the existence of an infrared singular gluon propagator frequently used in calculations within the global colour model. In particular, it reproduces a recently proposed QCD-motivated model where low energy chiral parameters were computed as a function of a dynamically generated gluon mass. We show how the strength of the confining interaction of this gluon propagator and the value of the physical gluon condensate may be connected.Comment: 13 pages, LaTe

    Risk of neuropsychiatric and cardiovascular adverse events following treatment with varenicline and nicotine replacement therapy in the UK Clinical Practice Research Datalink:a case-crossover study

    Get PDF
    BACKGROUND AND AIMS: Varenicline and nicotine replacement therapy (NRT) are the most commonly used medications to quit smoking. Given their widespread use, monitoring adverse risks remains important. This study aimed to estimate the neuropsychiatric and cardiovascular risks associated with varenicline and NRT as used in routine UK care.DESIGN: Case crossover study.SETTING: UK based electronic primary care records in the Clinical Practice Research Datalink from 2006 to 2015 linked to hospital and mortality datasets.PARTICIPANTS: Adult smokers (n=?) observed in periods when exposed and not exposed to either varenicline or NRT.MEASUREMENTS: Main outcomes included suicide, self-harm, myocardial infarction (MI), all-cause death and cause-specific death (MI, chronic obstructive pulmonary disease (COPD)). In primary analyses, conditional logistic regression was used to compare the chance of varenicline or NRT exposure in the risk period (90 days prior to the event) with the chance of exposure in an earlier single reference period (91-180 days prior to the event) or multiple 90-day reference periods to increase statistical power.FINDINGS: In the primary analyses, findings were inconclusive for the associations between varenicline and the main outcomes using a single reference period, whilst NRT was associated with MI (Odds ratio (OR) 1.40, 95% Confidence interval (CI) 1.18-1.67). Using multiple reference periods, varenicline was associated with an increased risk of self-harm (OR 1.32, 95% CI 1.12-1.56) and suicide (OR 3.56, 95% CI 1.32-9.60) but a reduction in all-cause death (OR 0.75, 95% CI 0.61-0.93). NRT was associated with MI (OR 1.54, 95% CI 1.36-1.74), self-harm (OR 1.30, 95% CI 1.18-1.44), and deaths from MI (OR 1.53, 95% CI 1.11-2.10), COPD (OR 1.33, 95% CI 1.14-1.56) and all causes (OR 1.28, 95% CI 1.18-1.40) when using multiple reference periods.CONCLUSIONS: There appear to be positive associations between 1) nicotine replacement therapy (NRT) and myocardial infarction, death, and risk of self-harm and 2) varenicline and increased risk of self-harm and suicide, as well as a negative association between varenicline and all-cause death. The associations may not be causal. They may reflect health changes at the time of smoking cessation (NRT is prescribed for people with cardiac problems) or be associated with quit attempts (exposure to both medicines was associated with self-harm).</p

    The modern tools of quantum mechanics (A tutorial on quantum states, measurements, and operations)

    Full text link
    This tutorial is devoted to review the modern tools of quantum mechanics, which are suitable to describe states, measurements, and operations of realistic, not isolated, systems in interaction with their environment, and with any kind of measuring and processing devices. We underline the central role of the Born rule and and illustrate how the notion of density operator naturally emerges, together the concept of purification of a mixed state. In reexamining the postulates of standard quantum measurement theory, we investigate how they may formally generalized, going beyond the description in terms of selfadjoint operators and projective measurements, and how this leads to the introduction of generalized measurements, probability operator-valued measures (POVM) and detection operators. We then state and prove the Naimark theorem, which elucidates the connections between generalized and standard measurements and illustrates how a generalized measurement may be physically implemented. The "impossibility" of a joint measurement of two non commuting observables is revisited and its canonical implementations as a generalized measurement is described in some details. Finally, we address the basic properties, usually captured by the request of unitarity, that a map transforming quantum states into quantum states should satisfy to be physically admissible, and introduce the notion of complete positivity (CP). We then state and prove the Stinespring/Kraus-Choi-Sudarshan dilation theorem and elucidate the connections between the CP-maps description of quantum operations, together with their operator-sum representation, and the customary unitary description of quantum evolution. We also address transposition as an example of positive map which is not completely positive, and provide some examples of generalized measurements and quantum operations.Comment: Tutorial. 26 pages, 1 figure. Published in a special issue of EPJ - ST devoted to the memory of Federico Casagrand

    Separability of Two-Party Gaussian States

    Get PDF
    We investigate the separability properties of quantum two-party Gaussian states in the framework of the operator formalism for the density operator. Such states arise as natural generalizations of the entangled state originally introduced by Einstein, Podolsky, and Rosen. We present explicit forms of separable and nonseparable Gaussian states.Comment: Brief Report submitted to Physical Review A, 4 pages, 1 figur

    Molecular Electroporation and the Transduction of Oligoarginines

    Full text link
    Certain short polycations, such as TAT and polyarginine, rapidly pass through the plasma membranes of mammalian cells by an unknown mechanism called transduction as well as by endocytosis and macropinocytosis. These cell-penetrating peptides (CPPs) promise to be medically useful when fused to biologically active peptides. I offer a simple model in which one or more CPPs and the phosphatidylserines of the inner leaflet form a kind of capacitor with a voltage in excess of 180 mV, high enough to create a molecular electropore. The model is consistent with an empirical upper limit on the cargo peptide of 40--60 amino acids and with experimental data on how the transduction of a polyarginine-fluorophore into mouse C2C12 myoblasts depends on the number of arginines in the CPP and on the CPP concentration. The model makes three testable predictions.Comment: 15 pages, 5 figure
    corecore