13 research outputs found

    QTLs and candidates genes for wood properties in maritime pine (Pinus pinaster Ait.)

    No full text
    A three-generation outbred pedigree of 186 individuals was used to identify the genomic regions involved in the variability of chemical and physical wood properties of Pinus pinaster. A total of 54 quantitative trait loci (QTLs) was detected, with an average of 2.4 QTLs per trait. Clusters of wood properties QTLs were found at several points in the genome, suggesting the existence of pleiotropic effects of a limited number of genes. The colocalizations observed in this study are in accordance with the genetic correlations previously reported in the literature. In addition, in an attempt to identify the genes underlying the QTLs, nine wood quality candidate genes involved in cell wall structure were localized on the genetic map. Only one of them, Korrigan, a gene encoding for a β 1-4 endo-glucanase known in Arabidopis thaliana to be involved in polysaccharide biosynthesis, co-localized with a wood quality QTL cluster involved in hemicellulose content and fibre characteristics. This finding is in accordance with results previously reported for this gene regarding its expression variability (transcriptome and proteome levels) and patterns of molecular evolution. The pertinence of this result will be tested in more rigorous designs in order to identify early selection predictors for wood quality

    Recombinant expression of margatoxin and agitoxin-2 in Pichia pastoris: an efficient method for production of KV1.3 channel blockers

    Get PDF
    The K(v)1.3 voltage-gated potassium channel regulates membrane potential and calcium signaling in human effector memory T cells that are key mediators of autoimmune diseases such as multiple sclerosis, type 1 diabetes, and rheumatoid arthritis. Thus, subtype-specific K(v)1.3 blockers have potential for treatment of autoimmune diseases. Several K(v)1.3 channel blockers have been characterized from scorpion venom, all of which have an alpha/beta scaffold stabilized by 3-4 intramolecular disulfide bridges. Chemical synthesis is commonly used for producing these disulfide-rich peptides but this approach is time consuming and not cost effective for production of mutants, fusion proteins, fluorescently tagged toxins, or isotopically labelled peptides for NMR studies. Recombinant production of K(v)1.3 blockers in the cytoplasm of E. coli generally necessitates oxidative refolding of the peptides in order to form their native disulfide architecture. An alternative approach that avoids the need for refolding is expression of peptides in the periplasm of E. coli but this often produces low yields. Thus, we developed an efficient Pichia pastoris expression system for production of K(v)1.3 blockers using margatoxin (MgTx) and agitoxin-2 (AgTx2) as prototypic examples. The Pichia system enabled these toxins to be obtained in high yield (12-18 mg/L). NMR experiments revealed that the recombinant toxins adopt their native fold without the need for refolding, and electrophysiological recordings demonstrated that they are almost equipotent with the native toxins in blocking K(V)1.3 (IC50 values of 201 +/- 39 pM and 97 +/- 3 pM for recombinant AgTx2 and MgTx, respectively). Furthermore, both recombinant toxins inhibited T-lymphocyte proliferation. A MgTx mutant in which the key pharmacophore residue K28 was mutated to alanine was ineffective at blocking K(V)1.3 and it failed to inhibit T-lymphocyte proliferation. Thus, the approach described here provides an efficient method of producing toxin mutants with a view to engineering K(v)1.3 blockers with therapeutic potential
    corecore