11 research outputs found
Using thermal time models to predict germination of five provenances of silver birch (Betula pendula Roth) in southern England
Climate predictions indicate that growing conditions may become unfavourable for certain tree species in parts of Britain. Guidelines suggest some planting of seed sources from regions between 2° and 5° south of those currently used as part of a climate change adaptation strategy. However, there has been little research on the benefits and risks associated with the use of planting stock from more southerly seed sources. Seeds of five provenances of the �relatively� dormant Betula pendula were germinated over a range of temperatures both with and without a pre-chill. Subsequently, a thermal time model was used to predict the impact of migrating these provenances to southern England. Results identified geographical differences in germination response; those from higher latitude were more sensitive to pre-chill
Controlling a leaky tap
We apply the Ott, Grebogy and Yorke mechanism for the control of chaos to the
analytical oscillator model of a leaky tap obtaining good results. We exhibit
the robustness of the control against both dynamical noise and measurement
noise.A possible way of controlling experimentally a leaky tap using
magnetic-field-produced variations in the viscosity of a magnetorheological
fluid is suggested.Comment: 14 pages, 12 figures. Submitted to Physics Letters
The First Preliminary Experiments on an 84 GHz Gyrotron with a Single-Stage Depressed Collector
"We fabricated and tested an 84GHz gyrotron with a single-stage depressed collector. The gyrotron has a high-voltage insulating section made of a low loss silicon nitride composite. In this preliminary experiment in the depressed collector configuration, we obtained 59l kW, 41% operation with a depression voltage of 22.5kV. Access to the higher efficiency region was inhibited by an increase in anode current.
Pines
Pinus is the most important genus within the Family Pinaceae and also within the gymnosperms by the number of species (109 species recognized by Farjon 2001) and by its contribution to forest ecosystems. All pine species are evergreen trees or shrubs. They are widely distributed in the northern hemisphere, from tropical areas to northern areas in America and Eurasia. Their natural range reaches the equator only in Southeast Asia. In Africa, natural occurrences are confined to the Mediterranean basin. Pines grow at various elevations from sea level (not usual in tropical areas) to highlands. Two main regions of diversity are recorded, the most important one in Central America (43 species found in Mexico) and a secondary one in China. Some species have a very wide natural range (e.g., P. ponderosa, P. sylvestris). Pines are adapted to a wide range of ecological conditions: from tropical (e.g., P. merkusii, P. kesiya, P. tropicalis), temperate (e.g., P. pungens, P. thunbergii), and subalpine (e.g., P. albicaulis, P. cembra) to boreal (e.g., P. pumila) climates (Richardson and Rundel 1998, Burdon 2002). They can grow in quite pure stands or in mixed forest with other conifers or broadleaved trees. Some species are especially adapted to forest fires, e.g., P. banksiana, in which fire is virtually essential for cone opening and seed dispersal. They can grow in arid conditions, on alluvial plain soils, on sandy soils, on rocky soils, or on marsh soils. Trees of some species can have a very long life as in P. longaeva (more than 3,000 years)