1,283 research outputs found

    2D photonic-crystal optomechanical nanoresonator

    Full text link
    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8 % over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265 nm-thick membrane, is used to form a compact microcavity involving the suspended nano-membrane as end mirror. The resulting cavity has a waist size smaller than 10 Ό\mum and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane

    A Novel Approach Based on Spatio-temporal Features and Random Forest for Scar Detection Using Cine Cardiac Magnetic Resonance Images

    Get PDF
    Aim. To identify the presence of scar tissue in the left ventricle from Gadolinium (Gd)-free magnetic resonance cine sequences using a learning-based approach relying on spatio-temporal features. Methods. The spatial and temporal features were extracted using local binary patterns from (i) cine end-diastolic frame and (ii) two parametric images of amplitude and phase wall motion, respectively, and classified with Random Forest. Results. When tested on 328 cine sequences from 40 patients, a recall of 70% was achieved, improving significantly the classification resulting from spatial and temporal features processed separately. Conclusions. The proposed approach showed promising results, paving the way for scar identification from Gd-free images

    Noise parametric identification and whitening for LIGO 40-meter interferometer data

    Full text link
    We report the analysis we made on data taken by Caltech 40-meter prototype interferometer to identify the noise power spectral density and to whiten the sequence of noise. We concentrate our study on data taken in November 1994, in particular we analyzed two frames of data: the 18nov94.2.frame and the 19nov94.2.frame. We show that it is possible to whiten these data, to a good degree of whiteness, using a high order whitening filter. Moreover we can choose to whiten only restricted band of frequencies around the region we are interested in, obtaining a higher level of whiteness.Comment: 11 pages, 15 figures, accepted for publication by Physical Review

    Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors

    Get PDF
    Detection of gravitational waves from astrophysical sources remains one of the most challenging problems faced by experimental physicists. A significant limit to the sensitivity of future long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test mass mirrors and their suspensions. Suspension thermal noise results from mechanical dissipation in the fused silica suspension fibers suspending the test mass mirrors and is therefore an important noise source at operating frequencies between ∌10 and 30 Hz. This dissipation occurs due to a combination of thermoelastic damping, surface and bulk losses. Its effects can be reduced by optimizing the thermoelastic and surface loss, and these parameters are a function of the cross sectional dimensions of the fiber along its length. This paper presents a new apparatus capable of high resolution measurements of the cross sectional dimensions of suspension fibers of both rectangular and circular cross section, suitable for use in advanced detector mirror suspensions

    Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors

    Full text link
    The displacement noise in the test mass mirrors of interferometric gravitational wave detectors is proportional to their elastic dissipation at the observation frequencies. In this paper, we analyze one fundamental source of dissipation in thin coatings, thermoelastic damping associated with the dissimilar thermal and elastic properties of the film and the substrate. We obtain expressions for the thermoelastic dissipation factor necessary to interpret resonant loss measurements, and for the spectral density of displacement noise imposed on a Gaussian beam reflected from the face of a coated mass. The predicted size of these effects is large enough to affect the interpretation of loss measurements, and to influence design choices in advanced gravitational wave detectors.Comment: 42 pages, 7 figures, uses REVTeX

    Invited Article: CO_2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions

    Get PDF
    In 2000 the first mirror suspensions to use a quasi-monolithic final stage were installed at the GEO600 detector site outside Hannover, pioneering the use of fused silica suspension fibers in long baseline interferometric detectors to reduce suspension thermal noise. Since that time, development of the production methods of fused silica fibers has continued. We present here a review of a novel CO_2 laser-based fiber pulling machine developed for the production of fused silica suspensions for the next generation of interferometric gravitational wave detectors and for use in experiments requiring low thermal noise suspensions. We discuss tolerances, strengths, and thermal noise performance requirements for the next generation of gravitational wave detectors. Measurements made on fibers produced using this machine show a 0.8% variation in vertical stiffness and 0.05% tolerance on length, with average strengths exceeding 4 GPa, and mechanical dissipation which meets the requirements for Advanced LIGO thermal noise performance

    Measurement of the optical absorption of bulk silicon at cryogenic temperature and the implication for the Einstein Telescope

    No full text
    International audienceWe report in this article on the measurement of the optical absorption of moderately doped crystalline silicon samples at 1550 nm, which is a candidate material for the main optics of the low temperature interferometer of the Einstein Telescope (ET). We observe a nearly constant absorption from room temperature down to cryogenic temperatures for two silicon samples presenting an optical absorption of 0.029 cm −1 and 780 ppm cm −1 , both crystals doped with boron. This is in contradiction to what was assumed previously—a negligible optical absorption at low temperature due to the carrier freezeout. As the main consequence, if the silicon intrinsic absorption can not be lowered , the cross section of the mirror suspension of the ET must be increased to be able to carry away the excess heat generated by the partially absorbed laser beam during the operation of the interferometer

    INTERNAL FRICTION AND YOUNG'S MODULUS MEASUREMENTS ON SiO2 AND Ta2O5 FILMS DONE WITH AN ULTRA-HIGH Q SILICON-WAFER SUSPENSION

    No full text
    International audienceIn order to study the internal friction of thin films a nodal suspension system called GeNS (Gentle Nodal Suspension) has been developed. The key features of this system are: i) the possibility to use substrates easily available like silicon wafers; ii) extremely low excess losses coming from the suspension system which allows to measure Q factors in excess of 2×10^8 on 3 " diameter wafers; iii) reproducibility of measurements within few percent on mechanical losses and 0.01% on resonant frequencies; iv) absence of clamping; v) the capability to operate at cryogenic temperatures. Measurements at cryogenic temperatures on SiO 2 and at room temperature only on Ta2O5 films deposited on silicon are presented

    On line power spectra identification and whitening for the noise in interferometric gravitational wave detectors

    Get PDF
    In this paper we address both to the problem of identifying the noise Power Spectral Density of interferometric detectors by parametric techniques and to the problem of the whitening procedure of the sequence of data. We will concentrate the study on a Power Spectral Density like the one of the Italian-French detector VIRGO and we show that with a reasonable finite number of parameters we succeed in modeling a spectrum like the theoretical one of VIRGO, reproducing all its features. We propose also the use of adaptive techniques to identify and to whiten on line the data of interferometric detectors. We analyze the behavior of the adaptive techniques in the field of stochastic gradient and in the Least Squares ones.Comment: 28 pages, 21 figures, uses iopart.cls accepted for pubblication on Classical and Quantum Gravit
    • 

    corecore