1,208 research outputs found

    2D photonic-crystal optomechanical nanoresonator

    Full text link
    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8 % over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265 nm-thick membrane, is used to form a compact microcavity involving the suspended nano-membrane as end mirror. The resulting cavity has a waist size smaller than 10 μ\mum and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane

    Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors

    Get PDF
    Detection of gravitational waves from astrophysical sources remains one of the most challenging problems faced by experimental physicists. A significant limit to the sensitivity of future long-baseline interferometric gravitational wave detectors is thermal displacement noise of the test mass mirrors and their suspensions. Suspension thermal noise results from mechanical dissipation in the fused silica suspension fibers suspending the test mass mirrors and is therefore an important noise source at operating frequencies between ∼10 and 30 Hz. This dissipation occurs due to a combination of thermoelastic damping, surface and bulk losses. Its effects can be reduced by optimizing the thermoelastic and surface loss, and these parameters are a function of the cross sectional dimensions of the fiber along its length. This paper presents a new apparatus capable of high resolution measurements of the cross sectional dimensions of suspension fibers of both rectangular and circular cross section, suitable for use in advanced detector mirror suspensions

    Invited Article: CO_2 laser production of fused silica fibers for use in interferometric gravitational wave detector mirror suspensions

    Get PDF
    In 2000 the first mirror suspensions to use a quasi-monolithic final stage were installed at the GEO600 detector site outside Hannover, pioneering the use of fused silica suspension fibers in long baseline interferometric detectors to reduce suspension thermal noise. Since that time, development of the production methods of fused silica fibers has continued. We present here a review of a novel CO_2 laser-based fiber pulling machine developed for the production of fused silica suspensions for the next generation of interferometric gravitational wave detectors and for use in experiments requiring low thermal noise suspensions. We discuss tolerances, strengths, and thermal noise performance requirements for the next generation of gravitational wave detectors. Measurements made on fibers produced using this machine show a 0.8% variation in vertical stiffness and 0.05% tolerance on length, with average strengths exceeding 4 GPa, and mechanical dissipation which meets the requirements for Advanced LIGO thermal noise performance

    A Novel Approach Based on Spatio-temporal Features and Random Forest for Scar Detection Using Cine Cardiac Magnetic Resonance Images

    Get PDF
    Aim. To identify the presence of scar tissue in the left ventricle from Gadolinium (Gd)-free magnetic resonance cine sequences using a learning-based approach relying on spatio-temporal features. Methods. The spatial and temporal features were extracted using local binary patterns from (i) cine end-diastolic frame and (ii) two parametric images of amplitude and phase wall motion, respectively, and classified with Random Forest. Results. When tested on 328 cine sequences from 40 patients, a recall of 70% was achieved, improving significantly the classification resulting from spatial and temporal features processed separately. Conclusions. The proposed approach showed promising results, paving the way for scar identification from Gd-free images

    Noise parametric identification and whitening for LIGO 40-meter interferometer data

    Full text link
    We report the analysis we made on data taken by Caltech 40-meter prototype interferometer to identify the noise power spectral density and to whiten the sequence of noise. We concentrate our study on data taken in November 1994, in particular we analyzed two frames of data: the 18nov94.2.frame and the 19nov94.2.frame. We show that it is possible to whiten these data, to a good degree of whiteness, using a high order whitening filter. Moreover we can choose to whiten only restricted band of frequencies around the region we are interested in, obtaining a higher level of whiteness.Comment: 11 pages, 15 figures, accepted for publication by Physical Review

    Thermoelastic dissipation in inhomogeneous media: loss measurements and displacement noise in coated test masses for interferometric gravitational wave detectors

    Full text link
    The displacement noise in the test mass mirrors of interferometric gravitational wave detectors is proportional to their elastic dissipation at the observation frequencies. In this paper, we analyze one fundamental source of dissipation in thin coatings, thermoelastic damping associated with the dissimilar thermal and elastic properties of the film and the substrate. We obtain expressions for the thermoelastic dissipation factor necessary to interpret resonant loss measurements, and for the spectral density of displacement noise imposed on a Gaussian beam reflected from the face of a coated mass. The predicted size of these effects is large enough to affect the interpretation of loss measurements, and to influence design choices in advanced gravitational wave detectors.Comment: 42 pages, 7 figures, uses REVTeX

    Silica suspension and coating developments for Advanced LIGO

    Get PDF
    The proposed upgrade to the LIGO detectors to form the Advanced LIGO detector system is intended to incorporate a low thermal noise monolithic fused silica final stage test mass suspension based on developments of the GEO 600 suspension design. This will include fused silica suspension elements jointed to fused silica test mass substrates, to which dielectric mirror coatings are applied. The silica fibres used for GEO 600 were pulled using a Hydrogen-Oxygen flame system. This successful system has some limitations, however, that needed to be overcome for the more demanding suspensions required for Advanced LIGO. To this end a fibre pulling machine based on a CO2 laser as the heating element is being developed in Glasgow with funding from EGO and PPARC. At the moment a significant limitation for proposed detectors like Advanced LIGO is expected to come from the thermal noise of the mirror coatings. An investigation on mechanical losses of silica/tantala coatings was carried out by several labs involved with Advanced LIGO R&D. Doping the tantala coating layer with titania was found to reduce the coating mechanical dissipation. A review of the results is given here

    Measurement of the mechanical loss of a cooled reflective coating for gravitational wave detection

    Full text link
    We have measured the mechanical loss of a dielectric multilayer reflective coating (ion-beam sputtered SiO2_2 and Ta2_2O5_5) in cooled mirrors. The loss was nearly independent of the temperature (4 K \sim 300 K), frequency, optical loss, and stress caused by the coating, and the details of the manufacturing processes. The loss angle was (46)×104(4 \sim 6) \times 10^{-4}. The temperature independence of this loss implies that the amplitude of the coating thermal noise, which is a severe limit in any precise measurement, is proportional to the square root of the temperature. Sapphire mirrors at 20 K satisfy the requirement concerning the thermal noise of even future interferometric gravitational wave detector projects on the ground, for example, LCGT.Comment: 8 pages, 6 figures, 3 tables : accepted version (by Physical Review D

    Characterization of ion-beam-sputtered AlF3_3 thin films for gravitational-wave interferometers

    Get PDF
    Thermal noise in amorphous coatings is a limitation for a wide range of precision experiments such as gravitational-wave detectors (GWDs). Mirrors for GWDs are composed of multiple thin layers of dielectric materials deposited on a substrate: the stack is made of layers with a high refractive index interleaved with layers of a low refractive index. The goal is to obtain high reflectivity and low thermal noise. In this paper we report on the optical and mechanical properties of ion-beamsputtered aluminium fluoride (AlF3) thin films which have one of the lowest refractive index among the known coating materials and we discuss their application in current and future GWDs
    corecore