282 research outputs found

    Observation of narrow-band noise accompanying the breakdown of insulating states in high Landau levels

    Get PDF
    Recent magnetotransport experiments on high mobility two-dimensional electron systems have revealed many-body electron states unique to high Landau levels. Among these are re-entrant integer quantum Hall states which undergo sharp transitions to conduction above some threshold field. Here we report that these transitions are often accompanied by narrow- and broad-band noise with frequencies which are strongly dependent on the magnitude of the applied dc current.Comment: 4 pages, 3 figure

    Heating process in the pre-Breakdown regime of the Quantum Hall Efect : a size dependent effect

    Full text link
    Our study presents experimental measurements of the contact and longitudinal voltage drops in Hall bars, as a function of the current amplitude. We are interested in the heating phenomenon which takes place before the breakdown of the quantum Hall effect, i.e. the pre-breakdown regime. Two types of samples has been investigated, at low temperature (4.2 and 1.5K) and high magnetic field (up to 13 T). The Hall bars have several different widths, and our observations clearly demonstrate that the size of the sample influences the heating phenomenon. By measuring the critical currents of both contact and longitudinal voltages, as a function of the filling factor (around i=2i=2), we highlight the presence of a high electric field domain near the source contact, which is observable only in samples whose width is smaller than 400 microns.Comment: 4 pages, 5 igures, 7th International Symposium of Research in High Magnetic Fields, to be published in physica

    Radiation induced oscillatory Hall effect in high mobility GaAs/AlGaAs devices

    Get PDF
    We examine the radiation induced modification of the Hall effect in high mobility GaAs/AlGaAs devices that exhibit vanishing resistance under microwave excitation. The modification in the Hall effect upon irradiation is characterized by (a) a small reduction in the slope of the Hall resistance curve with respect to the dark value, (b) a periodic reduction in the magnitude of the Hall resistance, RxyR_{xy}, that correlates with an increase in the diagonal resistance, RxxR_{xx}, and (c) a Hall resistance correction that disappears as the diagonal resistance vanishes.Comment: 4 pages text, 4 color figure

    Field-induced breakdown of the quantum Hall effect

    Full text link
    A numerical analysis is made of the breakdown of the quantum Hall effect caused by the Hall electric field in competition with disorder. It turns out that in the regime of dense impurities, in particular, the number of localized states decreases exponentially with the Hall field, with its dependence on the magnetic and electric field summarized in a simple scaling law. The physical picture underlying the scaling law is clarified. This intra-subband process, the competition of the Hall field with disorder, leads to critical breakdown fields of magnitude of a few hundred V/cm, consistent with observations, and accounts for their magnetic-field dependence \propto B^{3/2} observed experimentally. Some testable consequences of the scaling law are discussed.Comment: 7 pages, Revtex, 3 figures, to appear in Phys. Rev.

    Strong, Ultra-narrow Peaks of Longitudinal and Hall Resistances in the Regime of Breakdown of the Quantum Hall Effect

    Full text link
    With unusually slow and high-resolution sweeps of magnetic field, strong, ultra-narrow (width down to 100ÎŒT100 {\rm \mu T}) resistance peaks are observed in the regime of breakdown of the quantum Hall effect. The peaks are dependent on the directions and even the history of magnetic field sweeps, indicating the involvement of a very slow physical process. Such a process and the sharp peaks are, however, not predicted by existing theories. We also find a clear connection between the resistance peaks and nuclear spin polarization.Comment: 5 pages with 3 figures. To appear in PR

    Creation of super-high-flux photo-neutrons and gamma-rays > 8 MeV using a petawatt laser to irradiate high-Z solid targets

    Full text link
    We report the creation of super-high-flux gamma-rays with energy >8 MeV and photo-neutrons via the (g,n) reaction near giant dipole resonance energies (8 - 20 MeV), using the ~130 J Texas Petawatt laser to irradiate high-Z (Au, Pt, Re, W) targets of mm - cm thickness, at laser intensities up to ~5x1021W/cm2. We detected up to ~ several x 1012 gamma-rays > 8 MeV (~3% of incident laser energy) and ~ 1010 photo-neutrons per shot. Due to the short pulse and narrow gamma-ray cone (~17o half-width) around laser forward, the peak emergent gamma-ray flux >8 MeV reached ~1027 gammas/cm2/sec, and the peak emergent neutron flux reached ~1020 neutrons/cm2/sec. Such intense gamma-ray and neutron fluxes are among the highest achieved for short-pulse laser experiments. They will facilitate the study of nuclear reactions requiring super-high-flux of gamma-rays or neutrons, such as the creation of r-process elements. These results may also have far-reaching applications for nuclear energy, such as the transmutation of nuclear waste.Comment: 16 pages, 9 figure

    Sound archaeology: terminology, Palaeolithic cave art and the soundscape

    Get PDF
    This article is focused on the ways that terminology describing the study of music and sound within archaeology has changed over time, and how this reflects developing methodologies, exploring the expectations and issues raised by the use of differing kinds of language to define and describe such work. It begins with a discussion of music archaeology, addressing the problems of using the term ‘music’ in an archaeological context. It continues with an examination of archaeoacoustics and acoustics, and an emphasis on sound rather than music. This leads on to a study of sound archaeology and soundscapes, pointing out that it is important to consider the complete acoustic ecology of an archaeological site, in order to identify its affordances, those possibilities offered by invariant acoustic properties. Using a case study from northern Spain, the paper suggests that all of these methodological approaches have merit, and that a project benefits from their integration

    In re: ‘Experimental Music’

    Get PDF
    John Cage is universally associated with the phrase experimental music. But what did that phrase mean, for Cage and for Cage’s predecessors? I begin with Cage and Lejaren Hiller, both writing important texts on ‘experimental music’ in 1959. From there, I trace the phrase backwards, eventually reaching Emile Zola, Gertrude Stein, and William James. A final section traces the phrase forward to Cage and Hiller’s collaboration on HPSCHD (1969)

    Quantum railroads and directed localization at the juncture of quantum Hall systems

    Full text link
    The integer quantum Hall effect (QHE) and one-dimensional Anderson localization (AL) are limiting special cases of a more general phenomenon, directed localization (DL), predicted to occur in disordered one-dimensional wave guides called "quantum railroads" (QRR). Here we explain the surprising results of recent measurements by Kang et al. [Nature 403, 59 (2000)] of electron transfer between edges of two-dimensional electron systems and identify experimental evidence of QRR's in the general, but until now entirely theoretical, DL regime that unifies the QHE and AL. We propose direct experimental tests of our theory.Comment: 11 pages revtex + 3 jpeg figures, to appear in Phys. Rev.
    • 

    corecore