4 research outputs found

    Synthesis and characterization of polypropylene-graft-poly(l-lactide) copolymers by CuAAC click chemistry

    No full text
    Altinkok, Cagatay (Trakya author)The syntheses of polypropylene-graft-poly(l-lactide) copolymers (PP-g-PLAs) via copper (I)-catalyzed azide-alkyne cycloaddition "click" reaction (CuAAC) using azide side-chain functionalized polypropylene (PP-N-3) and alkyne end-functionalized poly(l-lactide) (PLA-Alkyne) were reported. The CuAAC was then applied to azide and different feeding ratios of alkyne functional polymers to give PP-g-PLAs that were characterized by FTIR, H-1-NMR, GPC, DSC, and WCA measurements. The CuAAC click reaction was achieved by two different feeding ratio (PP-N-3:PLA-Alkyne = 1:5 and 1:10) and thermal, biodegradable, and surface properties of obtained graft copolymers were investigated. The molar ratio of PLA were calculated as 72.7 (PP-g-PLA-1) and 78.4% (PP-g-PLA-2) by H-1-NMR spectroscopy. The water contact angle (WCA) values of PP-g-PLA-1 (81(o) +/- 1.3) and PP-g-PLA-2 (75(o) +/- 1.6) copolymers were compared with commercial chlorinated polypropylene (PP-Cl) (90(o) +/- 1.0), suggesting a more hydrophilic nature of desired graft copolymers produced. Conversely, the enzymatic biodegradation studies revealed that the weight losses of graft copolymers were determined as 13.6 and 22.1%, which is about 4% for commercial PP-Cl sample. Thus, it was clear that this simple and facile method was effective in promoting biodegradation of commercial polypropylene and attractive particularly for worldwide environmental remediation goals. (c) 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 2595-260

    Synthesis of self-curable polysulfone containing pendant benzoxazine units via CuAAC click chemistry

    No full text
    <p>Synthesis, characterization, and properties of new thermally curable polysulfone containing benzoxazine moieties in the side chain were investigated. First, chloromethylation and subsequent azidation processes were performed to form polysulfone containing pendant clickable azide groups. Independently, antagonist 3,4-dihydro-3-(prop-2-ynyl)-2H-benzoxazine was prepared by using paraformaldehyde, phenol and propargylamine. The following copper(I) catalyzed azide-alkyne cycloaddition click reaction was applied to obtain self-curable polysulfone with pendant benzoxazine units. The polymer and intermediates at various stages were characterized by <sup>1</sup>H-NMR, <sup>13</sup>C-NMR and FT-IR spectroscopies. The thermal properties and curing behavior of final polymer were investigated by differential scanning calorimetry and thermal gravimetric analysis. Compared to the neat polysulfone, the obtained polymers exhibited thermally more stable polymers.</p
    corecore