15 research outputs found

    Long-range interactions in the effective low energy Hamiltonian of Sr2IrO4: a core level resonant inelastic x-ray scattering study

    Get PDF
    We have investigated the electronic structure of Sr2IrO4 using core level resonant inelastic x-ray scattering. The experimental spectra can be well reproduced using ab initio density functional theory based multiplet ligand field theory calculations, thereby validating these calculations. We found that the low-energy, effective Ir t2g orbitals are practically degenerate in energy. We uncovered that covalency in Sr2IrO4, and generally in iridates, is very large with substantial oxygen ligand hole character in the Ir t2g Wannier orbitals. This has far reaching consequences, as not only the onsite crystal-field energies are determined by the long range crystal-structure, but, more significantly, magnetic exchange interactions will have long range distance dependent anisotropies in the spin direction. These findings set constraints and show pathways for the design of d^5 materials that can host compass-like magnetic interactions

    Coherent structural trapping through wave packet dispersion during photoinduced spin state switching.

    Get PDF
    The description of ultrafast nonadiabatic chemical dynamics during molecular photo-transformations remains challenging because electronic and nuclear configurations impact each other and cannot be treated independently. Here we gain experimental insights, beyond the Born-Oppenheimer approximation, into the light-induced spin-state trapping dynamics of the prototypical [Fe(bpy)3](2+) compound by time-resolved X-ray absorption spectroscopy at sub-30-femtosecond resolution and high signal-to-noise ratio. The electronic decay from the initial optically excited electronic state towards the high spin state is distinguished from the structural trapping dynamics, which launches a coherent oscillating wave packet (265 fs period), clearly identified as molecular breathing. Throughout the structural trapping, the dispersion of the wave packet along the reaction coordinate reveals details of intramolecular vibronic coupling before a slower vibrational energy dissipation to the solution environment. These findings illustrate how modern time-resolved X-ray absorption spectroscopy can provide key information to unravel dynamic details of photo-functional molecules.Etude femtoseconde rayons X et optique de la dynamique ultrarapide de photocommutation de matériaux moléculaires magnétique
    corecore