27 research outputs found

    Adsorption of common solvent molecules on graphene and MoS2_2 from first-principles

    Full text link
    Solvents are an essential element in the production and processing of two-dimensional (2D) materials. For example, the liquid phase exfoliation of layered materials requires a solvent to prevent the resulting monolayers from re-aggregating, while solutions of functional atoms and molecules are routinely used to modify the properties of the layers. It is generally assumed that these solvents do not interact strongly with the layer and so their effects can be neglected. Yet experimental evidence has suggested that explicit atomic-scale interactions between the solvent and layered material may play a crucial role in exfoliation and cause unintended electronic changes in the layer. Little is known about the precise nature of the interaction between the solvent molecules and the 2D layer. Here, we use density functional theory calculations to determine the adsorption configuration and binding energy of a variety of common solvent molecules, both polar and non-polar, on two of the most popular 2D materials, namely graphene and MoS2_2. We show that these molecules are physisorbed on the surface with negligible charge transferred between them. We find that the adsorption strength of the different molecules is independent of the polar nature of the solvent. However, we show the molecules induce a significant charge rearrangement at the interface after adsorption as a result of polar bonds in the molecule.Comment: 8 pages, 6 figure

    The role of solvent interfacial structural ordering in maintaining stable graphene dispersions

    Full text link
    Liquid phase exfoliation (LPE) is the most promising method for the low-cost, scalable production of two-dimensional nanosheets from their bulk counterparts. Extensive exfoliation occurs in most solvents due to the huge amount of energy introduced by sonication or shear mixing. However, the subsequent dispersion is not always stable, with extensive reaggregation occurring in some solvents. Identifying the optimal solvent for a particular layered material is difficult and requires a fundamental understanding of the mechanism involved in maintaining a stable dispersion. Here, we use molecular dynamics calculations to show that when graphene is immersed in a solvent, distinct solvation layers are formed irrespective of the choice of solvent and their formation is energetically favourable for all considered solvents. However, energetic considerations such as these do not explain the experimental solvent-dependence of the dispersion concentration. Instead, we find that solvents with high diffusion coefficients parallel to the graphene layer result in the lowest experimental concentration of graphene in solution. This can be explained by the enhanced ease of reaggregation in these solvents. Solvents with smaller diffusion coefficients result in higher experimental graphene concentrations as reaggregation is prevented. In the low diffusion limit, however, this relationship breaks down. We suggest that here the concentration of graphene in solution depends primarily on the separation efficiency of the initial exfoliation step. Based on this, we predict that the concentration of exfoliated graphene in solvents such as benzaldehyde and quinoline, which have low diffusion constants, can be increased dramatically by careful tuning of the experimental sonication parameters

    Large bias-dependent magnetoresistance in all-oxide magnetic tunnel junctions with a ferroelectric barrier

    Full text link
    All-oxide magnetic tunnel junctions (MTJs) incorporating functional materials as insulating barriers have the potential of becoming the founding technology for novel multi-functional devices. We investigate, by first-principles density functional theory, the bias-dependent transport properties of an all-oxide SrRuO3/BaTiO3/SrRuO3 MTJ. This incorporates a BaTiO3 barrier which can be found either in a non-ferroic or in a ferroelectric state. In such an MTJ not only can the tunneling magnetoresistance reach enormous values, but also, for certain voltages, its sign can be changed by altering the barrier electric state. These findings pave the way for a new generation of electrically-controlled magnetic sensors.Comment: 4 pages, 5 figure

    One-dimensional topological channels in heterostrained bilayer graphene

    Full text link
    The domain walls between AB- and BA-stacked gapped bilayer graphene have garnered intense interest as they host topologically-protected, valley-polarised transport channels. The introduction of a twist angle between the bilayers and the associated formation of a Moire pattern has been the dominant method used to study these topological channels, but heterostrain can also give rise to similar stacking domains and interfaces. Here, we theoretically study the electronic structure of a uniaxially heterostrained bilayer graphene. We discuss the formation and evolution of interface-localized channels in the one-dimensional Moire pattern that emerges due to the different stacking registries between the two layers. We find that a uniform heterostrain is not sufficient to create one-dimensional topological channels in biased bilayer graphene. Instead, using a simple model to account for the in-plane atomic reconstruction driven by the changing stacking registry, we show that the resulting expanded Bernal-stacked domains and sharper interfaces are required for robust topological interfaces to emerge. These states are highly localised in the AA- or SP-stacked interface regions and exhibit differences in their layer and sublattice distribution depending on the interface stacking. We conclude that heterostrain can be used as a mechanism to tune the presence and distribution of topological channels in gapped bilayer graphene systems, complementary to the field of twistronics.Comment: 10 pages, 7 figure

    Structural and electronic properties of Li intercalated graphene on SiC(0001)

    Full text link
    We investigate the structural and electronic properties of Li-intercalated monolayer graphene on SiC(0001) using combined angle-resolved photoemission spectroscopy and first-principles density functional theory. Li intercalates at room temperature both at the interface between the buffer layer and SiC and between the two carbon layers. The graphene is strongly nn-doped due to charge transfer from the Li atoms and two π\pi-bands are visible at the Kˉ\bar{K}-point. After heating the sample to 300∘^\circC, these π\pi-bands become sharp and have a distinctly different dispersion to that of Bernal-stacked bilayer graphene. We suggest that the Li atoms intercalate between the two carbon layers with an ordered structure, similar to that of bulk LiC6_6. An AA-stacking of these two layers becomes energetically favourable. The π\pi-bands around the Kˉ\bar{K}-point closely resemble the calculated band structure of a C6_6LiC6_6 system, where the intercalated Li atoms impose a super-potential on the graphene electronic structure that opens pseudo-gaps at the Dirac points of the two π\pi-cones.Comment: 9 pages, 7 figure
    corecore