9 research outputs found

    Hongos asociados con dos poblaciones de Acromyrmex lobicornis (Formicidae) de San Luis, Argentina

    Get PDF
    Fungi associated with two populations of Acromyrmex lobicornis (Formicidae) from San Luis, Argentina. The ant genera Atta and Acromyrmex (Tribe Attini) include the mowers or trimmers of leaves called leaf-cutting ants, which are the only ants that show an obligate dependence of fungal symbionts as a food source. Fragments of plants collected by these ants are used to grow the fungal symbionts, which produce gongylidia for the larvae and queen of the colony to feed on. The aim of this study was to isolate and characterize both, genetically and taxonomically the fungi cultured by two populations of Acromyrmex lobicornis from San Luis province. Samples were collected from the most superficial chambers of the nests and fungal isolates were cultured in malt extract (ME) and potato dextrose agar (PDA) media. The fungal symbiont associated to A. lobicornis nests was identified as Leucoagaricus gongylophorus (Möller) Singer (Holobasidiomycetes, Agaricales) through its morpho-anatomic characteristics and sequencing of ITS1, ITS2 and 5.8S ribosomal gene. Fungal growth in ME was higher than in PDA, and symbiont isolates showed differential growth rates depending on ant populations from where they originated. Fungal symbiont nutritional features and distributional aspects are discussed.Los géneros Atta y Acromyrmex comprenden a las hormigas cortadoras o podadoras de hojas de la tribu Attini, único grupo de hormigas que presenta una dependencia obligada con simbiontes fúngicos como fuente de alimento. Los fragmentos de plantas recolectados por estas hormigas son utilizados para cultivar al simbionte fúngico, el que origina gongilidios de los cuales se alimentan las larvas y la reina de la colonia. El objetivo de este trabajo fue aislar y caracterizar genómica y taxonómicamente los hongos cultivados por dos poblaciones de Acromyrmex lobicornis de la provincia de San Luis. Para ello, se recolectaron muestras del simbionte de las cámaras de cultivo más superficiales de los nidos y se cultivaron en los medios de extracto de malta (EM) y agar papa dextrosa (APD). El simbionte fúngico se identificó como Leucoagaricus gongylophorus (Möller) Singer (Holobasidiomycetes, Agaricales) por sus características morfo-anatómicas en cultivo, las secuencias del gen 5.8S ribosomal y de los espaciadores ITS1 e ITS2. El diámetro de las colonias de los simbiontes fúngicos aislados fue mayor en EM; además, mostraron crecimiento diferencial entre las poblaciones de hormigas de las que fueron aislados. Se discuten posibles implicancias nutricionales y aspectos relacionados con la distribución de los simbiontes aislados.Fil: Lugo, Mónica Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - San Luis. Instituto Multidiciplinario de Investigación Biológica de San Luis; Argentina;Fil: Crespo, Esteban María. Diversidad Vegetal I. Universidad Nacional de San Luis; Argentina;Fil: Cafaro, Matias Jose. Universidad de Puerto Rico; Puerto Rico;Fil: Jofre, Laura Elizabeth. Universidad Nacional de San Luis. Facultad de Quimica, Bioquimica y Farmacia; Argentina

    Interplay between climate, pollution and COVID-19 on ST-elevation myocardial infarction in a large metropolitan region

    No full text
    BACKGROUND: Collective risk factors such as climate and pollution impact on the risk of acute cardiovascular events, including ST-elevation myocardial infarction (STEMI). There is limited data however on the precise temporal and independent association between these factors and STEMI, and the potentially interacting role of government policies against Coronavirus disease 2019 (COVID-19), especially for Latin America. METHODS: We retrospectively collected aggregate data on daily STEMI admissions at 10 tertiary care centers in the Buenos Aires metropolitan area, Argentina, from January 1, 2017 to November 30, 2020. Daily measurements for temperature, humidity, atmospheric pressure, wind direction, wind speed, and rainfall, as well as carbon monoxide (CO), nitrogen dioxide, and particulate matter <10 µm (PM10), were retrieved. Exploratory analyses focused on key COVID-19-related periods (e.g. first case, first lockdown), and Stringency Index quantifying the intensity of government policy response against COVID-19. RESULTS: A total of 1498 STEMI occurred over 1430 days, for an average of 0.12 STEMI per center (decreasing from 0.130 in 2018 to 0.102 in 2020, P=0.016). Time series analysis showed that lower temperature and higher concentration of CO and PM10 were all significantly associated with an increased rate of STEMI (all P<0.05), whereas COVID-19 outbreak, lockdown, and stringency of government policies were all inversely associated with STEMI (all P<0.05). Notably, environmental features impacted as early as 28 days before the event (all P<0.05), even if same or prior day associations proved stronger (all P<0.05). Multivariable analysis suggested that maximum temperature (P=0.001) and PM10 (P=0.033) were the strongest predictor of STEMI, even after accounting for COVID-19-related countermeasures (P=0.043). CONCLUSIONS: Lower temperature and higher concentrations of CO and PM10 are associated with significant increases in the rate of STEMI in a large Latin American metropolitan area. The reduction in STEMI cases seen during the COVID-19 pandemic is at least in part mediated by improvements in pollution, especially reductions in PM10.Fil: Biondi Zoccai, Giuseppe. Università di Roma; ItaliaFil: Rodriguez Granillo, Gaston Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional - Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas "Prof. Dr. Alberto C. Taquini". Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional; ArgentinaFil: Mercade, Juan Manuel. No especifíca;Fil: Dawidowski, Laura Elena. Comisión Nacional de Energía Atómica; ArgentinaFil: Seropian, Ignacio Miguel. Hospital Italiano; ArgentinaFil: Cohen, Fernando. Hospital Italiano; ArgentinaFil: Sturmer Ramos, Cristiano. Gobierno de la Ciudad de Buenos Aires. Hospital General de Agudos "Ramos Mejía"; ArgentinaFil: Descalzo, Amalia. No especifíca;Fil: Rubilar, Bibiana. No especifíca;Fil: Sztejfman, Matias. No especifíca;Fil: Zaidel, Ezequiel. No especifíca;Fil: Pazos, Cristian. No especifíca;Fil: Leguizamon, Jorge. No especifíca;Fil: Cafaro, German. No especifíca;Fil: Visconti, Mariano. No especifíca;Fil: Baglioni, Pablo. Hospital San Juan de Dios;Fil: Noya, Agustin. Hospital Británico de Buenos Aires; ArgentinaFil: Fontana, Lucia. No especifíca;Fil: Rodriguez-Granillo, Matias. Sanatorio "Otamendi y Miroli S. A."; ArgentinaFil: Pavlovsky, Hernan. Sanatorio "Otamendi y Miroli S. A."; ArgentinaFil: Alvarez, Jose A.. Hospital Británico de Buenos Aires; ArgentinaFil: Lylyk, Pedro. No especifíca;Fil: Versaci, Francesco. No especifíca;Fil: Abrutzky, Rosana. No especifíca

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger.Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    Since the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger

    Development of the CMS detector for the CERN LHC Run 3

    No full text
    International audienceSince the initial data taking of the CERN LHC, the CMS experiment has undergone substantial upgrades and improvements. This paper discusses the CMS detector as it is configured for the third data-taking period of the CERN LHC, Run 3, which started in 2022. The entire silicon pixel tracking detector was replaced. A new powering system for the superconducting solenoid was installed. The electronics of the hadron calorimeter was upgraded. All the muon electronic systems were upgraded, and new muon detector stations were added, including a gas electron multiplier detector. The precision proton spectrometer was upgraded. The dedicated luminosity detectors and the beam loss monitor were refurbished. Substantial improvements to the trigger, data acquisition, software, and computing systems were also implemented, including a new hybrid CPU/GPU farm for the high-level trigger
    corecore