937 research outputs found

    Neutrino and astroparticle physics

    Get PDF
    We report on the neutrinos and astroparticle session of this workshop and discuss the present status and future perspectives of this research field

    Critical sets of nonlinear Sturm-Liouville operators of Ambrosetti-Prodi type

    Full text link
    The critical set C of the operator F:H^2_D([0,pi]) -> L^2([0,pi]) defined by F(u)=-u''+f(u) is studied. Here X:=H^2_D([0,pi]) stands for the set of functions that satisfy the Dirichlet boundary conditions and whose derivatives are in L^2([0,pi]). For generic nonlinearities f, C=\cup C_k decomposes into manifolds of codimension 1 in X. If f''0, the set C_j is shown to be non-empty if, and only if, -j^2 (the j-th eigenvalue of u -> u'') is in the range of f'. The critical components C_k are (topological) hyperplanes.Comment: 6 pages, no figure

    Girdling, gibberellic acid, and forchlorfenuron: effects on yield, quality, and metabolic profile of table grape cv. Italia

    Get PDF
    Among the various vineyard treatments adopted in recent years for table-grape cultivation, there has been a significant use of plant growth regulators (PGRs) and girdling to increase berry size and yield. In particular, an increase in the application of forchlorfenuron (CPPU) and gibberellic acid (GA3) for many seeded and seedless table-grape cultivars has been registered in several countries. In this two-year study, girdling at berry set, gibberellic acid (10 mg/L) applied at berry diameter of 10 to 11 mm, and forchlorfenuron (9.75 mg/L) applied at berry diameter of 11 to 12 mm were investigated to verify their effects on berry size, yield, and chemical and metabolic characteristics of Italia grapes. In general, at harvest all treatments significantly increased berry diameter, length, and weight and consequent cluster weight and yield/vine compared to an untreated control. The treatments showed significant differences for the colorimetric parameters, in particular a higher value of hue for berries treated with GA3 and CPPU, thus shifting the skin color from yellow toward yellow-green. Metabolomic study carried out by nuclear magnetic resonance spectroscopy combined with principal component analysis indicated that metabolic profile depends on the year and, in each year, the effect of treatments consisted of a slight variation of amino acid content. Treatments effects were more pronounced in the year characterized by a cooler summer

    Time dependence of the e^- flux measured by PAMELA during the July 2006 - December 2009 solar minimum

    Full text link
    Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy not accessible from the study of the cosmic-ray nuclear components due to their differing diffusion and energy-loss processes. However, when measured near Earth, the effects of propagation and modulation of galactic cosmic rays in the heliosphere, particularly significant for energies up to at least 30 GeV, must be properly taken into account. In this paper the electron (e^-) spectra measured by PAMELA down to 70 MeV from July 2006 to December 2009 over six-months time intervals are presented. Fluxes are compared with a state-of-the-art three-dimensional model of solar modulation that reproduces the observations remarkably well.Comment: 40 pages, 18 figures, 1 tabl

    Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment

    Get PDF
    The propagation of cosmic rays inside our galaxy plays a fundamental role in shaping their injection spectra into those observed at Earth. One of the best tools to investigate this issue is the ratio of fluxes for secondary and primary species. The boron-to-carbon (B/C) ratio, in particular, is a sensitive probe to investigate propagation mechanisms. This paper presents new measurements of the absolute fluxes of boron and carbon nuclei, as well as the B/C ratio, from the PAMELA space experiment. The results span the range 0.44 - 129 GeV/n in kinetic energy for data taken in the period July 2006 - March 2008

    Trapped proton fluxes at low Earth orbits measured by the PAMELA experiment

    Full text link
    We report an accurate measurement of the geomagnetically trapped proton fluxes for kinetic energy above > 70 MeV performed by the PAMELA mission at low Earth orbits (350-610 km). Data were analyzed in the frame of the adiabatic theory of charged particle motion in the geomagnetic field. Flux properties were investigated in detail, providing a full characterization of the particle radiation in the South Atlantic Anomaly region, including locations, energy spectra and pitch angle distributions. PAMELA results significantly improve the description of the Earth's radiation environment at low altitudes placing important constraints on the trapping and interaction processes, and can be used to validate current trapped particle radiation models.Comment: 22 pages, 5 figure

    Search for anisotropies in cosmic-ray positrons detected by the PAMELA experiment

    Get PDF
    The PAMELA detector was launched on board of the Russian Resurs-DK1 satellite on June 15, 2006. Data collected during the first four years have been used to search for large-scale anisotropies in the arrival directions of cosmic-ray positrons. The PAMELA experiment allows for a full sky investigation, with sensitivity to global anisotropies in any angular window of the celestial sphere. Data samples of positrons in the rigidity range 10 GV \leq R \leq 200 GV were analyzed. This article discusses the method and the results of the search for possible local sources through analysis of anisotropy in positron data compared to the proton background. The resulting distributions of arrival directions are found to be isotropic. Starting from the angular power spectrum, a dipole anisotropy upper limit \delta = 0.166 at 95% C.L. is determined. Additional search is carried out around the Sun. No evidence of an excess correlated with that direction was found.Comment: The value of the dipole anisotropy upper limit has been changed. The method is correct but there was a miscalculation in the relative formul

    PAMELA's measurements of geomagnetic cutoff variations during solar energetic particle events

    Full text link
    Data from the PAMELA satellite experiment were used to measure the geomagnetic cutoff for high-energy (\gtrsim 80 MeV) protons during the solar particle events on 2006 December 13 and 14. The variations of the cutoff latitude as a function of rigidity were studied on relatively short timescales, corresponding to single spacecraft orbits (about 94 minutes). Estimated cutoff values were cross-checked with those obtained by means of a trajectory tracing approach based on dynamical empirical modeling of the Earth's magnetosphere. We find significant variations in the cutoff latitude, with a maximum suppression of about 6 deg for \sim80 MeV protons during the main phase of the storm. The observed reduction in the geomagnetic shielding and its temporal evolution were compared with the changes in the magnetosphere configuration, investigating the role of IMF, solar wind and geomagnetic (Kp, Dst and Sym-H indexes) variables and their correlation with PAMELA cutoff results.Comment: Conference: The 34th International Cosmic Ray Conference (ICRC2015), 30 July - 6 August, 2015, The Hague, The Netherlands, Volume: PoS(ICRC2015)28

    Time dependence of the electron and positron components of the cosmic radiation measured by the PAMELA experiment between July 2006 and December 2015

    Full text link
    Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) till the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field.Comment: 11 pages, 2 figure
    corecore