102 research outputs found

    Enthalpies of formation of L12 intermetallics derived from heats of reordering

    Get PDF
    A new method is proposed for estimating the enthalpies of formation of L12 (fcc-ordered) intermetallics from the heat release measured during ordering of their disordered polymorphs. The method is applied to Cu3Au, Ni3Al, and Ni3Si. The resulting estimates of enthalpies of formation are close to values obtained by high temperature dissolution calorimetry. They also appear to be more precise than estimates based on Miedema's correlations provided that care is taken to account properly for the magnetic and lattice stability contributions to the formation enthalpies in the ordered and disordered states

    Topological correlations in soap froths

    Full text link
    Correlation in two-dimensional soap froth is analysed with an effective potential for the first time. Cells with equal number of sides repel (with linear correlation) while cells with different number of sides attract (with NON-bilinear) for nearest neighbours, which cannot be explained by the maximum entropy argument. Also, the analysis indicates that froth is correlated up to the third shell neighbours at least, contradicting the conventional ideas that froth is not strongly correlated.Comment: 10 Pages LaTeX, 6 Postscript figure

    Damage Spreading in the Ising Model

    Full text link
    We present two new results regarding damage spreading in ferromagnetic Ising models. First, we show that a damage spreading transition can occur in an Ising chain that evolves in contact with a thermal reservoir. Damage heals at low temperature and spreads for high T. The dynamic rules for the system's evolution for which such a transition is observed are as legitimate as the conventional rules (Glauber, Metropolis, heat bath). Our second result is that such transitions are not always in the directed percolation universality class.Comment: 5 pages, RevTeX, revised and extended version, including 3 postscript figure

    Debye temperature of disordered bcc-Fe-Cr alloys

    Full text link
    Debye temperature, TD, of Fe100-xCrx disordered alloys with 0<x<99.9 was determined from the temperature dependence of the centre shift of 57Fe Mossbauer spectra recorded in the temperature range of 80-300K. Its compositional dependence shows an interesting non-monotonous behaviour. For 0<x<~45 as well as for ~75<x<~95 the Debye temperature is enhanced relative to its value of a metallic iron, and at x=~3 there is a local maximum having a relative height of ~12% compared to a pure iron. For ~45~95 the Debye temperature is smaller than the one for the metallic iron, with a local minimum at x=~55 at which the relative decrease of TD amounts to ~12%. The first maximum coincides quite well with that found for the spin-waves stiffness coefficient, D0, while the pretty steep decrease observed for x>~95 which is indicative of a decoupling of the probe Fe atoms from the underlying chromium matrix is likely related to the spin-density waves which constitute the magnetic structure of chromium in that interval of composition. The harmonic force constant calculated from the Debye temperature of the least Fe-concentrated alloy (x>99.9) amounts to only 23% of the one characteristic of a pure chromium.Comment: 15 pages, 7 figures, 26 reference

    All-dielectric photonic metamaterials operating beyond the homogenization regime

    Get PDF
    Photonic metamaterials made of graded photonic crystals operating near the bandgap frequency region are proposed for field manipulation around l=1.5μm. Proof-of-concept structures have been studied using Hamiltonian optics and FDTD simulation, fabricated, and characterized using farfield optical measurements. Experimental results are in good agreement with predictions, showing the interest of graded photonic crystals as an (ultra-low loss) alternative solution to the use of metamaterials combining dielectric and metallic materials with sub-wavelength unit cells

    Glycosylation in vitro de la legumine de pois. Influence sur quelques proprietes fonctionnelles

    No full text
    19 ref.International audienc

    Preparation of alumina-chromium composites by reactive hot-pressing A1 + Cr2O3 based powders

    No full text
    Chromium-Alumina based composites have been obtained by reactive sintering under load and vacuum of various powder blends. The starting mixtures have been prepared from commercially available aluminium metal, chromium and aluminium oxides, and a thermally unstable titanium compound respectively. Differential thermal analysis (DTA) and differential calorimetry (DSC) as well as X-ray diffraction were used to identify chemical transformations taking place within the system. Microstructure changes were observed via scanning electron microscopy (SEM) with an energy dispersive spectroscopy system (EDS). Chemical reactions in relevant binary subsystems have been investigated qualitatively in order to understand the course of events in the more complex quaternary mixtures. The possibilities of forming intermetallic phases in both the Al-Ti and Cr-Ti systems and of dissolving some Cr2O3 into the product Al2O3 phase have been considered. The influence of such parameters as thermal schedule and initial aluminium content on those side reactions and the resulting microstructures was investigated
    corecore