170 research outputs found

    Amphetamine recapitulates developmental programs in the zebrafish

    Get PDF
    The zebrafish as a model for drug addiction

    The primacy of cognition in the manifestations of substance use disorders

    Get PDF
    Fil: Bisagno, Veronica. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas (i); ArgentinaFil: Cadet, Jean Lud. National Institute On Drug Abuse; Estados Unido

    Glial-neuronal ensembles: partners in drug addiction-associated synaptic plasticity

    Get PDF
    Drug addiction is manifested by a compulsive drive to take licit or illicit substances despite repeated severe adverse consequences (Volkow et al., 2012). Addiction is also accompanied by a vicious cycle of binges, abstinence, and relapses. Almost all drugs of abuse trigger euphoric feelings consequent to a rapid increase of dopamine levels in the mesolimbic system. Even after long periods of abstinence, addicts remain vulnerable to drug craving and/or relapses that can be triggered by stimuli previously associated with drugs (Koob and Volkow, 2010). These features of addiction suggest that drugs might cause a form of persistent neuroplasticity that is acutely responsive to environmental stimuli, with consequent compulsive drug-seeking and taking behaviors.Fil: Cadet, Jean Lud. National Institute on Drug Abuse; Estados UnidosFil: Bisagno, Veronica. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas (i); Argentina. Universidad de Buenos Aires; Argentin

    DRD2 and DRD4 genes related to cognitive deficits in HIV‑infected adults who abuse alcohol

    Get PDF
    Background HIV-infected individuals continue to experience neurocognitive deterioration despite virologically successful treatments. The causes of neurocognitive impairment are still unclear. However, several factors have been suggested including the role of genetics. There is evidence suggesting that neurocognitive impairment is heritable and individual differences in cognition are strongly driven by genetic variations. The contribution of genetic variants affecting the metabolism and activity of dopamine may influence these individual differences. Methods The present study explored the relationship between two candidate genes (DRD4 and DRD2) and neurocognitive performance in HIV-infected adults. A total of 267 HIV-infected adults were genotyped for polymorphisms, DRD4 48 bp-variable number tandem repeat (VNTR), DRD2 rs6277 and ANKK1 rs1800497. The Short Category (SCT), Color Trail (CTT) and Rey-Osterrieth Complex Figure Tests (ROCT) were used to measure executive function and memory. Results Results showed significant associations with the SNP rs6277 and impaired executive function (odds ratio = 3.3, 95 % CI 1.2–2.6; p = 0.004) and cognitive flexibility (odds ratio = 1.6, 95 % CI 2.0–5.7; p = 0.001). The results were further stratified by race and sex and significant results were seen in males (odds ratio = 3.5, 95 % CI 1.5–5.5; p = 0.008) and in African Americans (odds ratio = 3.1, 95 % CI 2.3–3.5; p = 0.01). Also, DRD4 VNTR 7-allele was significantly associated with executive dysfunction. Conclusion The study shows that genetically determined differences in the SNP rs6277 DRD2 gene and DRD4 48 bp VNTR may be risk factors for deficits in executive function and cognitive flexibility

    Serotonin-Related Gene Polymorphisms and Asymptomatic Neurocognitive Impairment in HIV-Infected Alcohol Abusers

    Get PDF
    HIV-infected individuals continue to experience neurocognitive deterioration despite virologically successful treatments. While the cause remains unclear, evidence suggests that HIV-associated neurocognitive disorders (HAND) may be associated with neurobehavioral dysfunction. Genetic variants have been explored to identify risk markers to determine neuropathogenesis of neurocognitive deterioration. Memory deficits and executive dysfunction are highly prevalent among HIV-infected adults. These conditions can affect their quality of life and HIV risk-taking behaviors. Single nucleotide polymorphisms in the SLC6A4, TPH2, and GALM genes may affect the activity of serotonin and increase the risk of HAND. The present study explored the relationship between SLC6A4, TPH2, and GALM genes and neurocognitive impairment in HIV-infected alcohol abusers. A total of 267 individuals were genotyped for polymorphisms in SLC6A4 5-HTTLPR, TPH2 rs4570625, and GALM rs6741892. To assess neurocognitive functions, the Short Category and the Auditory Verbal Learning Tests were used. TPH2 SNP rs4570625 showed a significant association with executive function in African American males (odds ratio 4.8, 95% CI, 1.5–14.8; ). Similarly, GALM SNP rs6741892 showed an increased risk with African American males (odds ratio 2.4, 95% CI, 1.2–4.9; ). This study suggests that TPH2 rs4570625 and GALM rs6741892 polymorphisms may be risk factors for HAND

    Methamphetamine Induces TET1- and TET3-Dependent DNA Hydroxymethylation of Crh and Avp Genes in the Rat Nucleus Accumbens

    Get PDF
    Methamphetamine (METH) addiction is a biopsychosocial disorder that is accompanied by multiple relapses even after prolonged abstinence, suggesting the possibilities of long-lasting maladaptive epigenetic changes in the brain. Here, we show that METH administration produced time-dependent increases in the expression of corticotropin-releasing hormone (Crh/Crf), arginine vasopressin (Avp), and cocaine- and amphetamine-regulated transcript prepropeptide (Cartpt) mRNAs in the rat nucleus accumbens (NAc). Chromatin immunoprecipitation (ChIP) assays revealed that METH increased the abundance of phosphorylated CREB (pCREB) at the promoter of Cartpt but not at Avp or Crh DNA sequences. In contrast, METH produced DNA hypomethylation at sites near the Crh transcription start site (TSS) and at intragenic Avp sequences. METH also increased DNA hydroxymethylation at the Crh TSS and at intragenic Avp sites. In addition, METH increased the protein expression of ten-eleven-translocation enzymes that catalyze DNA hydroxymethylation. Importantly, METH increased TET1 binding at the Crh promoter and increased TET3 binding at Avp intragenic regions. We further tested the role of TET enzymes in METH-induced changes in gene expression by using the TET inhibitor, 1,5-isoquinolinediol (IQD), and found that IQD blocked METH-induced increases in Crh and Avp mRNA expression. Together, these results indicate that METH produced changes in neuropeptide transcription by both activation of the cAMP/CREB pathway and stimulation of TET-dependent DNA hydroxymethylation. These results provide molecular evidence for epigenetic controls of METH-induced changes in the expression of neuropeptides.Fil: Jayanthi, Subramaniam. National Institutes of Health; Estados UnidosFil: Gonzalez, Betina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de Investigaciones FarmacolĂłgicas; ArgentinaFil: McCoy, Michael T.. National Institutes of Health; Estados UnidosFil: Ladenheim, Bruce. National Institutes of Health; Estados UnidosFil: Bisagno, Veronica. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de Investigaciones FarmacolĂłgicas; ArgentinaFil: Cadet, Jean Lud. National Institutes of Health; Estados Unido

    Modafinil improves methamphetamine-induced object recognition deficits and restores prefrontal cortex ERK signaling in mice

    Get PDF
    Chronic use of methamphetamine (METH) leads to long-lasting cognitive dysfunction in humans and in animal models. Modafinil is a wake-promoting compound approved for the treatment of sleeping disorders. It is also prescribed off label to treat METH dependence. In the present study, we investigated whether modafinil could improve cognitive deficits induced by sub-chronic METH treatment in mice by measuring visual retention in a Novel Object Recognition (NOR) task. After sub-chronic METH treatment (1 mg/kg, once a day for 7 days), mice performed the NOR task, which consisted of habituation to the object recognition arena (5 min a day, 3 consecutive days), training session (2 equal objects, 10 min, day 4), and a retention session (1 novel object, 5 min, day 5). One hour before the training session, mice were given a single dose of modafinil (30 or 90 mg/kg). METH-treated mice showed impairments in visual memory retention, evidenced by equal preference of familiar and novel objects during the retention session. The lower dose of modafinil (30 mg/kg) had no effect on visual retention scores in METH-treated mice, while the higher dose (90 mg/kg) rescued visual memory retention to control values. We also measured extracellular signal-regulated kinase (ERK) phosphorylation in medial prefrontal cortex (mPFC), hippocampus, and nucleus accumbens (NAc) of METH- and vehicle-treated mice that received modafinil 1 h before exposure to novel objects in the training session, compared to mice placed in the arena without objects. Elevated ERK phosphorylation was found in the mPFC of vehicle-treated mice, but not in METH-treated mice, exposed to objects. The lower dose of modafinil had no effect on ERK phosphorylation in METH-treated mice, while 90 mg/kg modafinil treatment restored the ERK phosphorylation induced by novelty in METH-treated mice to values comparable to controls. We found neither a novelty nor treatment effect on ERK phosphorylation in hippocampus or NAc of vehicle- and METH-treated mice receiving acute 90 mg/kg modafinil treatment. Our results showed a palliative role of modafinil against METH-induced visual cognitive impairments, possibly by normalizing ERK signaling pathways in mPFC. Modafinil may be a valuable pharmacological tool for the treatment of cognitive deficits observed in human METH abusers as well as in other neuropsychiatric conditions.Fil: Gonzalez, Betina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de Investigaciones FarmacolĂłgicas; ArgentinaFil: Raineri Andersen, Mariana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de Investigaciones FarmacolĂłgicas; ArgentinaFil: Cadet, Jean Lud. National Institute on Drug Abuse. Intramural Research Program; Estados UnidosFil: GarcĂ­a Rill, Edgar. University of Arkansas for Medical Sciences; Estados UnidosFil: Urbano Suarez, Francisco Jose. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de FisiologĂ­a, BiologĂ­a Molecular y Neurociencias; ArgentinaFil: Bisagno, Veronica. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de Investigaciones FarmacolĂłgicas. Universidad de Buenos Aires. Facultad de Farmacia y BioquĂ­mica. Instituto de Investigaciones FarmacolĂłgicas; Argentin

    Compulsive methamphetamine taking in the presence of punishment is associated with increased oxytocin expression in the nucleus accumbens of rats

    Get PDF
    Methamphetamine addiction is mimicked in rats that self-administer the drug. However, these self-administration (SA) models do not include adverse consequences that are necessary to reach a diagnosis of addiction in humans. Herein, we measured genome-wide transcriptional consequences of methamphetamine SA and footshocks in the rat brain. We trained rats to self-administer methamphetamine for 20 days. Thereafter, lever-presses for methamphetamine were punished by mild footshocks for 5 days. Response-contingent punishment significantly reduced methamphetamine taking in some rats (shock-sensitive, SS) but not in others (shock-resistant, SR). Rats also underwent extinction test at one day and 30 days after the last shock session. Rats were euthanized one day after the second extinction test and the nucleus accumbens (NAc) and dorsal striatum were collected to measure gene expression with microarray analysis. In the NAc, there were changes in the expression of 13 genes in the SRvsControl and 9 genes in the SRvsSS comparison. In the striatum, there were 9 (6 up, 3 down) affected genes in the SRvsSS comparison. Among the upregulated genes was oxytocin in the NAc and CARTpt in the striatum of SR rats. These observations support a regional role of neuropeptides in the brain after a long withdrawal interval when animals show incubation of methamphetamine craving

    Methamphetamine Induces Dopamine D1 Receptor-Dependent Endoplasmic Reticulum Stress-Related Molecular Events in the Rat Striatum

    Get PDF
    Methamphetamine (METH) is an illicit toxic psychostimulant which is widely abused. Its toxic effects depend on the release of excessive levels of dopamine (DA) that activates striatal DA receptors. Inhibition of DA-mediated neurotransmission by the DA D1 receptor antagonist, SCH23390, protects against METH-induced neuronal apoptosis. The initial purpose of the present study was to investigate, using microarray analyses, the influence of SCH23390 on transcriptional responses in the rat striatum caused by a single METH injection at 2 and 4 hours after drug administration. We identified 545 out of a total of 22,227 genes as METH-responsive. These include genes which are involved in apoptotic pathways, endoplasmic reticulum (ER) stress, and in transcription regulation, among others. Of these, a total of 172 genes showed SCH23390-induced inhibition of METH-mediated changes. Among these SCH23390-responsive genes were several genes that are regulated during ER stress, namely ATF3, HSP27, Hmox1, HSP40, and CHOP/Gadd153. The secondary goal of the study was to investigate the role of DA D1 receptor stimulation on the expression of genes that participate in ER stress-mediated molecular events. We thus used quantitative PCR to confirm changes in the METH-responsive ER genes identified by the microarray analyses. We also measured the expression of these genes and of ATF4, ATF6, BiP/GRP78, and of GADD34 over a more extended time course. SCH23390 attenuated or blocked METH-induced increases in the expression of the majority of these genes. Western blot analysis revealed METH-induced increases in the expression of the antioxidant protein, Hmox1, which lasted for about 24 hours after the METH injection. Additionally, METH caused DA D1 receptor-dependent transit of the Hmox1 regulator protein, Nrf2, from cytosolic into nuclear fractions where the protein exerts its regulatory functions. When taken together, these findings indicate that SCH23390 can provide protection against neuronal apoptosis by inhibiting METH-mediated DA D1 receptor-mediated ER stress in the rat striatum. Our data also suggest that METH-induced toxicity might be a useful model to dissect molecular mechanisms involved in ER stress-dependent events in the rodent brain
    • …
    corecore