23 research outputs found

    Fatty Acid Metabolites Combine with Reduced ÎČ Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes

    Get PDF
    Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, ÎČ oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised ÎČ oxidation to promote disease-predictive inflammation in human T2D. Although glycolysis generally fuels inflammation, Nicholas, Proctor, and Agrawal et al. report that PBMCs from subjects with type 2 diabetes use a different mechanism to support chronic inflammation largely independent of fuel utilization. Loss- and gain-of-function experiments in cells from healthy subjects show mitochondrial alterations combine with increases in fatty acid metabolites to drive chronic T2D-like inflammation

    Acute Activation of AMP-Activated Protein Kinase Prevents H2O2-Induced Premature Senescence in Primary Human Keratinocytes

    Get PDF
    We investigated the effects of AMPK on H2O2-induced premature senescence in primary human keratinocytes. Incubation with 50 ”M H2O2 for 2 h resulted in premature senescence with characteristic increases in senescence-associated ß-galactosidase (SA-gal) staining 3 days later and no changes in AMPK or p38 MAPK activity. The increase in SA-gal staining was preceded by increases in both p53 phosphorylation (S15) (1 h) and transactivation (6 h) and the abundance of the cyclin inhibitor p21CIP1 (16 h). Incubation with AICAR or resveratrol, both of which activated AMPK, prevented the H2O2-induced increases in both SA-Gal staining and p21 abundance. In addition, AICAR diminished the increase in p53 transactivation. The decreases in SA-Gal expression induced by resveratrol and AICAR were prevented by the pharmacological AMPK inhibitor Compound C, expression of a DN-AMPK or AMPK knock-down with shRNA. Likewise, both knockdown of AMPK and expression of DN-AMPK were sufficient to induce senescence, even in the absence of exogenous H2O2. As reported by others, we found that AMPK activation by itself increased p53 phosphorylation at S15 in embryonic fibroblasts (MEF), whereas under the same conditions it decreased p53 phosphorylation in the keratinocytes, human aortic endothelial cells, and human HT1080 fibrosarcoma cells. In conclusion, the results indicate that H2O2 at low concentrations causes premature senescence in human keratinocytes by activating p53-p21CIP1 signaling and that these effects can be prevented by acute AMPK activation and enhanced by AMPK downregulation. They also suggest that this action of AMPK may be cell or context-specific

    Natural History of MYH7-Related Dilated Cardiomyopathy

    Full text link
    BACKGROUND Variants in myosin heavy chain 7 (MYH7) are responsible for disease in 1% to 5% of patients with dilated cardiomyopathy (DCM); however, the clinical characteristics and natural history of MYH7-related DCM are poorly described. OBJECTIVES We sought to determine the phenotype and prognosis of MYH7-related DCM. We also evaluated the influence of variant location on phenotypic expression. METHODS We studied clinical data from 147 individuals with DCM-causing MYH7 variants (47.6% female; 35.6 +/- 19.2 years) recruited from 29 international centers. RESULTS At initial evaluation, 106 (72.1%) patients had DCM (left ventricular ejection fraction: 34.5% +/- 11.7%). Median follow-up was 4.5 years (IQR: 1.7-8.0 years), and 23.7% of carriers who were initially phenotype-negative developed DCM. Phenotypic expression by 40 and 60 years was 46% and 88%, respectively, with 18 patients (16%) first diagnosed at <18 years of age. Thirty-six percent of patients with DCM met imaging criteria for LV noncompaction. During follow-up, 28% showed left ventricular reverse remodeling. Incidence of adverse cardiac events among patients with DCM at 5 years was 11.6%, with 5 (4.6%) deaths caused by end-stage heart failure (ESHF) and 5 patients (4.6%) requiring heart transplantation. The major ventricular arrhythmia rate was low (1.0% and 2.1% at 5 years in patients with DCM and in those with LVEF of <= 35%, respectively). ESHF and major ventricular arrhythmia were significantly lower compared with LMNA-related DCM and similar to DCM caused by TTN truncating variants. CONCLUSIONS MYH7-related DCM is characterized by early age of onset, high phenotypic expression, low left ventricular reverse remodeling, and frequent progression to ESHF. Heart failure complications predominate over ventricular arrhythmias, which are rare. (C) 2022 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation

    Resveratrol-Induced AMP-Activated Protein Kinase Activation Is Cell-Type Dependent: Lessons from Basic Research for Clinical Application

    No full text
    Despite the promising effects of resveratrol, its efficacy in the clinic remains controversial. We were the first group to report that the SIRT1 activator resveratrol activates AMP-activated protein kinase (AMPK) (Diabetes 2005; 54: A383), and we think that the variability of this cascade may be responsible for the inconsistency of resveratrol’s effects. Our current studies suggest that the effect of SIRT1 activators such as resveratrol may not be solely through activation of SIRT1, but also through an integrated effect of SIRT1-liver kinase B1 (LKB1)-AMPK. In this context, resveratrol activates SIRT1 (1) by directly binding to SIRT1; and (2) by increasing NAD+ levels by upregulating the salvage pathway through Nampt activation, an effect mediated by AMPK. The first mechanism promotes deacetylation of a limited number of SIRT1 substrate proteins (e.g., PGC-1). The second mechanism (which may be more important than the first) activates other sirtuins in addition to SIRT1, which affects a broad spectrum of substrates. Despite these findings, detailed mechanisms of how resveratrol activates AMPK have not been reported. Here, we show that (1) resveratrol-induced activation of AMPK requires the presence of functional LKB1; (2) Resveratrol increases LKB1 activity, which involves translocation and phosphorylation at T336 and S428; (3) Activation of LKB1 causes proteasomal degradation of LKB1; (4) At high concentrations (50–100 ”M), resveratrol also activates AMPK through increasing AMP levels; and (5) The above-mentioned activation mechanisms vary among cell types, and in some cell types, resveratrol fails to activate AMPK. These results suggest that resveratrol-induced activation of AMPK is not a ubiquitous phenomenon. In addition, AMPK-mediated increases in NAD+ in the second mechanism require several ATPs, which may not be available in many pathological conditions. These phenomena may explain why resveratrol is not always consistently beneficial in a clinical setting

    Comparison of proinsulin and C-peptide secretion in healthy versus long-standing type 1 diabetes mellitus cohorts: A pilot study.

    No full text
    AIMS:Increased proinsulin (PI) compared to C-peptide (CP) concentrations have been reported, both prior to type 1 diabetes mellitus (T1D) onset, as well as early in disease. In this pilot study, we sought to define the normal PI secretion in a healthy cohort and compare this to a local T1D cohort and a separate well-defined nationally representative T1D cohort with measurable CP. METHODS:Thirteen healthy subjects and 12 T1D subjects with T1D >3 years from the local T1D cohort completed mixed meal tolerance tests (MMTT) with PI and CP measured over 90 and 240 minutes. The change in CP (maximum versus baseline, ΔCP) during MMTT in the T1D Exchange T1D cohort was stratified according to non-fasting PI concentrations, based on a fasting PI threshold, as defined by the healthy control group. RESULTS:The maximum fasting PI in the control group was 6 pmol/L. Individuals from the T1D Exchange with a non-fasting PI ≄ 6 pmol/L had a lower ΔCP during a MMTT, compared to those with a PI < 6 pmol/L. While only three individuals from the local T1D cohort had measurable CP and PI during the MMTT, those with a greater ΔCP had lower PI secretion. CONCLUSION:While all T1D subjects from the T1D Exchange secreted measurable non-fasting PI, those with a greater non-fasting PI demonstrated a decrease in ΔCP during the MMTT. PI may be preferentially secreted compared to CP in some individuals with long standing T1D

    Glucagon-Like Peptide-1 (GLP-1) Analog Liraglutide Inhibits Endothelial Cell Inflammation through a Calcium and AMPK Dependent Mechanism

    No full text
    <div><p>Liraglutide is a glucagon-like peptide-1 (GLP-1) mimetic used for the treatment of Type 2 diabetes. Similar to the actions of endogenous GLP-1, liraglutide potentiates the post-prandial release of insulin, inhibits glucagon release and increases satiety. Recent epidemiological studies and clinical trials have suggested that treatment with GLP-1 mimetics may also diminish the risk of cardiovascular disease in diabetic patients. The mechanism responsible for this effect has yet to be determined; however, one possibility is that they might do so by a direct effect on vascular endothelium. Since low grade inflammation of the endothelium is an early event in the pathogenesis of atherosclerotic cardiovascular disease (ASCVD), we determined the effects of liraglutide on inflammation in cultured human aortic endothelial cells (HAECs). Liraglutide reduced the inflammatory responses to TNFα and LPS stimulation, as evidenced by both reduced protein expression of the adhesion molecules VCAM-1 and E-Selectin, and THP-1 monocyte adhesion. This was found to result from increased cell Ca<sup>2+</sup> and several molecules sensitive to Ca<sup>2+</sup> with known anti inflammatory actions in endothelial cells, including CaMKKÎČ, CaMKI, AMPK, eNOS and CREB. Treatment of the cells with STO-609, a CaMKK inhibitor, diminished both the activation of AMPK, CaMKI and the inhibition of TNFα and LPS-induced monocyte adhesion by liraglutide. Likewise, expression of an shRNA against AMPK nullified the anti-inflammatory effects of liraglutide. The results indicate that liraglutide exerts a strong anti-inflammatory effect on HAECs. They also demonstrate that this is due to its ability to increase intracellular Ca<sup>2+</sup> and activate CAMKKÎČ, which in turn activates AMPK.</p></div

    Schema depicting the proposed mechanisms for the anti-inflammatory effect of liraglutide on human aortic endothelial cells.

    No full text
    <p>Schema depicting the proposed mechanisms for the anti-inflammatory effect of liraglutide on human aortic endothelial cells.</p

    STO-609 inhibits liraglutide signaling and its effects on monocyte adhesion.

    No full text
    <p>Cells were incubated with STO-609 for 30 minutes prior to addition of liraglutide: <b>A:</b> pAMPK (Thr172), (n = 4<b>)</b><b>B:</b> pCamK1 (Thr177), (n = 4) <b>C, D:</b> TNFα and LPS stimulated monocyte adhesion (n = 8). Liraglutide: 100 nM, STO-609∶0.5 ”g/mL, TNFα: 10 ng/mL, LPS: 2 ”g/mL. *p<0.05, **p<0.01, ***p<0.001.</p
    corecore