18 research outputs found

    On tree amplitudes of supersymmetric Einstein-Yang-Mills theory

    Get PDF
    We present a new formula for all single trace tree amplitudes in four dimensional super Yang-Mills coupled to Einstein supergravity. Like the Cachazo-He-Yuan formula, our expression is supported on solutions of the scattering equations, but with momenta written in terms of spinor helicity variables. Supersymmetry and parity are both manifest. In the pure gravity and pure Yang-Mills sectors, it reduces to the known twistor-string formulae. We show that the formula behaves correctly under factorization and sketch how these amplitudes may be obtained from a four-dimensional (ambi)twistor string.Comment: 14 pages, no figures. v2: erroneous formulae removed, improved discussion of factorizatio

    Perturbative gravity at null infinity

    Get PDF
    We describe a theory that lives on the null conformal boundary of asymptotically flat space-time, and whose states encode the radiative modes of (super)gravity. We study the induced action of the BMS group, verifying that the Ward identity for certain BMS supertranslations is equivalent to Weinberg's soft graviton theorem in the bulk. The subleading behaviour of soft gravitons may also be obtained from a Ward identity for certain superrotation generators in the extended BMS algebra proposed by Barnich & Troessaert. We show that the theory computes the complete classical gravitational S-matrix, perturbatively around the Minkowski vacuum.Comment: 14 pages, no figures. v2: typos corrected, references adde

    Tree-Level Formalism

    Full text link
    We review two novel techniques used to calculate tree-level scattering amplitudes efficiently: MHV diagrams, and on-shell recursion relations. For the MHV diagrams, we consider applications to tree-level amplitudes and focus in particular on the N=4 supersymmetric formulation. We also briefly describe the derivation of loop amplitudes using MHV diagrams. For the recursion relations, after presenting their general proof, we discuss several applications to massless theories with and without supersymmetry, to theories with massive particles, and to graviton amplitudes in General Relativity. This article is an invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories".Comment: 40 pages, 8 figures, invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories", R. Roiban(ed), M. Spradlin(ed), A. Volovich(ed); v2: minor corrections, references adde

    Amplitudes at Weak Coupling as Polytopes in AdS_5

    Full text link
    We show that one-loop scalar box functions can be interpreted as volumes of geodesic tetrahedra embedded in a copy of AdS_5 that has dual conformal space-time as boundary. When the tetrahedron is space-like, it lies in a totally geodesic hyperbolic three-space inside AdS_5, with its four vertices on the boundary. It is a classical result that the volume of such a tetrahedron is given by the Bloch-Wigner dilogarithm and this agrees with the standard physics formulae for such box functions. The combinations of box functions that arise in the n-particle one-loop MHV amplitude in N=4 super Yang-Mills correspond to the volume of a three-dimensional polytope without boundary, all of whose vertices are attached to a null polygon (which in other formulations is interpreted as a Wilson loop) at infinity.Comment: 16 pages, 5 figure

    Hidden Simplicity of Gauge Theory Amplitudes

    Full text link
    These notes were given as lectures at the CERN Winter School on Supergravity, Strings and Gauge Theory 2010. We describe the structure of scattering amplitudes in gauge theories, focussing on the maximally supersymmetric theory to highlight the hidden symmetries which appear. Using the BCFW recursion relations we solve for the tree-level S-matrix in N=4 super Yang-Mills theory, and describe how it produces a sum of invariants of a large symmetry algebra. We review amplitudes in the planar theory beyond tree-level, describing the connection between amplitudes and Wilson loops, and discuss the implications of the hidden symmetries.Comment: 46 pages, 15 figures. v2 ref added, typos fixe

    Generic multiloop methods and application to N=4 super-Yang-Mills

    Full text link
    We review some recent additions to the tool-chest of techniques for finding compact integrand representations of multiloop gauge-theory amplitudes - including non-planar contributions - applicable for N=4 super-Yang-Mills in four and higher dimensions, as well as for theories with less supersymmetry. We discuss a general organization of amplitudes in terms of purely cubic graphs, review the method of maximal cuts, as well as some special D-dimensional recursive cuts, and conclude by describing the efficient organization of amplitudes resulting from the conjectured duality between color and kinematic structures on constituent graphs.Comment: 42 pages, 18 figures, invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories", v2 minor corrections, v3 added reference

    Basics of Generalized Unitarity

    Full text link
    We review generalized unitarity as a means for obtaining loop amplitudes from on-shell tree amplitudes. The method is generally applicable to both supersymmetric and non-supersymmetric amplitudes, including non-planar contributions. Here we focus mainly on N=4 Yang-Mills theory, in the context of on-shell superspaces. Given the need for regularization at loop level, we also review a six-dimensional helicity-based superspace formalism and its application to dimensional and massive regularizations. An important feature of the unitarity method is that it offers a means for carrying over any identified tree-level property of on-shell amplitudes to loop level, though sometimes in a modified form. We illustrate this with examples of dual conformal symmetry and a recently discovered duality between color and kinematics.Comment: 37 pages, 10 figures. Invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories", R. Roiban(ed), M. Spradlin(ed), A. Volovich(ed

    Ambitwistor strings and the scattering equations at one loop

    Get PDF
    Ambitwistor strings are chiral, infinite tension analogues of conventional string theory whose target space is the space of complex null geodesics and whose spectrum consists exclusively of massless states. At genus zero, these strings underpin the Cachazo-He-Yuan formulae for tree level scattering of gravitons, gluons and scalars. In this paper we extend these formulae in a number of directions. Firstly, we consider Ramond sector vertex operators and construct simple amplitudes involving space-time fermions. These agree with tree amplitudes in ten dimensional supergravity and super Yang--Mills. We then show that, after the usual GSO projections, the ambitwistor string partition function is modular invariant. We consider the scattering equations at genus one, and calculate one loop scattering amplitudes for NS-NS external states in the Type II ambitwistor string. We conjecture that these give new representations of (the integrand of) one loop supergravity amplitudes and we show that they have the expected behaviour under factorization of the worldsheet in both non--separating and separating degenerations.Comment: 34 pages, no figures. v2: improvements to discussion, references update

    Worldsheet factorization for twistor-strings

    Get PDF
    We study the multiparticle factorization properties of two worldsheet theories which--at tree-level--describe the scattering of massless particles in four dimensions: the Berkovits-Witten twistor-string for N=4 super-Yang-Mills coupled to N=4 conformal supergravity, and the Skinner twistor-string for N=8 supergravity. By considering these string-like theories, we can study factorization at the level of the worldsheet before any Wick contractions or integrals have been performed; this is much simpler than considering the factorization properties of the amplitudes themselves. In Skinner's twistor-string this entails the addition of worldsheet gravity as well as a formalism that represents all external states in a manifestly symmetric way, which we develop explicitly at genus zero. We confirm that the scattering amplitudes of Skinner's theory, as well as the gauge theory amplitudes for the planar sector of the Berkovits-Witten theory, factorize appropriately at genus zero. In the non-planar sector, we find behavior indicative of conformal gravity in the Berkovits-Witten twistor-string. We contrast factorization in twistor-strings with the story in ordinary string theory, and also make some remarks on higher genus factorization and disconnected prescriptions.Comment: 50 pages, 7 figures. v2: typos corrected and references update
    corecore