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Abstract
We describe a theory that lives on the null conformal boundary ℐ of
asymptotically flat space-time, and whose states encode the radiative modes of
(super)gravity. We study the induced action of the BMS group, verifying that
the Ward identity for certain BMS supertranslations is equivalent to Wein-
bergʼs soft graviton theorem in the bulk. The subleading behaviour of soft
gravitons may also be obtained from a Ward identity for certain superrotation
generators in the extended BMS algebra proposed by Barnich and Troessaert.
We show that the theory computes the complete classical gravitational S-
matrix, perturbatively around the Minkowski vacuum.

Keywords: perturbative gravity, asymptotic flatness, S-matrix
PACS numbers: 04.20.-q, 11.55.-m

1. Introduction

The conformal boundary of a four dimensional asymptotically flat space-time is a null
hypersurface ℐ, whose past and future components ℐ± are topologically  × S2 [1, 2]. The
symmetry group of each of ℐ± is a copy of the infinite dimensional BMS group [3, 4]. The
BMS group is the asymptotic symmetry group of the bulk space-time and, as in AdS/CFT, we
should expect it to play an important role in any candidate holographic description of gravity.
Indeed, this perspective was taken well before the advent of AdS/CFT, for instance in
Ashtekarʼs asymptotic quantization programme [5, 6] which encodes bulk gravitational
degrees of freedom in terms of geometric data defined intrinsically on ℐ.

Much subsequent research has followed this general line of thought (often with the
language of holography), seeking to determine the symmetry properties required for a
boundary theory in asymptotically flat space-time (see [7–11]). Most recently, Strominger
[12] has shown that in space-times where space-like infinity is sufficiently well-behaved
[13, 14], one can identify a diagonal action of the BMS groups on ℐ+ and ℐ−; this diagonal
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action is a symmetry of the gravitational S-matrix. In particular, the Ward identity associated
with certain carefully chosen BMS generators is equivalent [15] to Weinbergʼs soft graviton
theorem [16] in the bulk. It has further been suggested that the subleading behaviour of soft
gravitons [17, 18] may be due to a Ward identity for an extension of the BMS group proposed
by Barnich and Troessaert [19].

This kinematic work is important because of its universality: the soft graviton theorem
holds irrespective of the matter content of the theory, and receives no quantum corrections to
all orders in perturbation theory1.

We wish to go beyond these purely kinematic considerations. The most obvious, dif-
feomorphism invariant observable in an asymptotically flat space-time is the S-matrix.
Indeed, the S-matrix is almost tautologically holographic, being defined in terms of how states
look in the distant past and future. For massless particles, the relevant asymptotic region is ℐ,
and one might hope that correlation functions in a boundary theory on ℐ can compute
scattering amplitudes in the bulk. In fact, the usual on-shell momentum eigenstates considered
in scattering amplitudes are extremely closely related to local insertions on ℐ, as we review
in section 2. The precise form of the scattering amplitudes of course depends on the details of
the quantum gravity in the bulk, but it seems reasonable to expect that there should exist a
regime where classical (super)gravity is a good bulk description.

Traditionally, amplitudes have been computed using Feynman diagrams to evolve fields
through the bulk, or else by considering a string theory whose worldsheet is mapped to a
minimal surface in the bulk space-time. In recent years however, powerful techniques have
been developed that compute amplitudes purely using on-shell quantities: notions such as a
space-time Lagrangian or off-shell propagator do not arise. Furthermore, in these methods the
building blocks from which amplitudes are constructed do not have a straightforward bulk
space-time interpretation. We would like to hope that such methods provide insight into the
structure of a putative holographic dual to gravity in asymptotically flat space-time, at least in
some limiting regime.

The purpose of this paper is to construct a field theory that lives entirely on (complex-
ified) ℐ, and whose states encode the asymptotic radiative modes of gravity in the bulk. We
study the action of the BMS group on this theory, and in particular recover the Ward identity
of [12] for the action of charges associated with supertranslations, and hence the soft graviton
theorem. The theory also accommodates charges for the superrotations of the extended BMS
group [19], and when acting on correlation functions, these produce the sub-leading grav-
itational soft factor found in [18]. Finally, we show that the simplest correlation functions of
this theory produce the tree-level S-matrix of  = 8 supergravity.

Let us emphasize immediately that we do not view this theory as a realization of a
boundary theory dual to gravity in asymptotically flat space. Rather, it may provide a per-
turbative description of such a theory in a regime where classical supergravity is valid in the
bulk. Nevertheless, it still provides a dynamical realization of a theory defined entirely on ℐ
which produces bulk observables and carries a natural action of the BMS group.

The contents of the paper are as follows. In section 2 we provide a brief review of the
geometry of ℐ and its complexification, as well as the asymptotic radiative modes of gravity
and the BMS group. We define our model in section 3, describing its BRST charge and states.
Section 4 discusses the realization of the (extended) BMS group in terms of charges in the
model; we show how these act on correlation functions and recover the results of [12, 15, 18].

1 Whether or not quantum corrections to the sub-leading term arise depends subtly on whether the graviton is taken
to become soft before or after expanding the regularized loop integral in ϵ−4 2 dimensions [20–22].
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In section 5, we evaluate the simplest correlation functions explicitly, and show that they
produce the tree-level scattering amplitudes of supergravity. We conclude in section 6.

2. The geometry of I

In four dimensions, the conformal boundary ℐ of an asymptotically flat space-time is a null
hypersurface in the conformally re-scaled metric, composed of two disjoint factors

∪ℐ = ℐ ℐ− +. Each of ℐ± has the topology of a light cone ℐ ≅ ×± S2 [1, 2]. Null
infinity is the natural holographic screen on which the S-matrix of massless states may be
defined. In Lorentzian signature, the scattering process evolves initial data on ℐ− to final data
on ℐ+.

For the most part in this paper we shall not consider ℐ itself, but rather its complex-
ification ℐ [23]. There are many physically interesting situations in classical relativity where
one must complexify ℐ in order to obtain non-trivial information (see [24–26]), reality
conditions being imposed only subsequently. In the context of the S-matrix, crossing sym-
metry implies that amplitudes extend analytically to ℐ . More generally, we expect that our
choice to work on ℐ without reference to a future or past boundary is closely tied to the
‘Christodoulou–Klainerman’ property of real space-times [13, 14]. This in particular allows
one to make an identification between the generators of ℐ− and ℐ+, thereby selecting a
single copy of the BMS group to act on all asymptotic data [12].

Complexified null infinity ℐ is a complex three-manifold which can be charted with
coordinates ζ ζu( , , ˜), where u is a complex coordinate along the null generators of ℐ and
ζ ζ( , ˜) are complex stereographic coordinates related to the usual θ ϕ( , ) by ζ θ= ϕe cot ( 2)i

and ζ θ= ϕ−˜ e cot ( 2)i . (Note that ζ ζ( , ˜) are not necessarily complex conjugates if θ ϕ( , ) are
not assumed real.) Equivalently, we can view the complexified space of generators as the
product  ×1 1 of two Riemann spheres, described by homogeneous coordinates
λ λ λ=α ( , )0 1 and λ λ λ=α˜ ( ˜ , ˜ )˙ 0̇ 1̇ , respectively. Hence, we can chart ℐ with ‘projective’
coordinates λ λu( , , ˜), defined up to the equivalence [27]

λ λ λ λ∼ ∈( ) ( )u rru r r r r, , ˜ ˜ , , ˜ ˜ , , ˜ *.

Denoting the line bundle of complex functions on  ×1 1 which are homogeneous of
degree m in λ and degree n in λ̃ by  m n( , ), this means that ℐ is realized as the total space
of the line bundle

  → ×(1, 1) . (2.1)1 1

To recover the Lorentzian real slice one simply imposes λ λ=α α˜ ˙ and =u ū. Thus, the real
Lorentzian cones ℐ± may each be viewed as the total space of the bundle   →(1, 1) 1,
where  (1, 1) is the restriction of  (1, 1) to real-valued functions.

The BMS group (the asymptotic symmetry group of asymptotically flat space-times
[3, 4]) acts naturally on ℐ, and hence on ℐ by analytic continuation. This group is the semi-
direct product

= ⋉BMS ST SL(2, ). (2.2)

of an infinite dimensional Abelian group ST of supertranslations that moves one up and
down a generator of the null cone, with rotations that are the global diffeomorphisms of the
space S2 of generators. In terms of the coordinates λ λu( , , ˜), the supertranslations act as
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α λ λ λ λ λ λ→ + → →( )u u , ˜ , , ˜ ˜ , (2.3)

where α transforms in the same way as u under a rescaling of the homogeneous coordinates,
and where λ λ=˜ ¯ and α is real in Lorentzian signature. Expanding α in spherical harmonics,
the =ℓ 0, 1 terms correspond to Poincaré translations. These Poincaré translations are a
symmetry of any asymptotically flat space-time, while a generic supertranslation transforms
one asymptotically flat solution of general relativity to another [6, 28].

An asymptotically flat Lorentzian space-time carries two copies of this BMS group,
acting at ℐ± separately. As explained in [12], only the diagonal subgroup can act on the S-
matrix. ℐ carries an action of (one copy of) the complexified BMS group that admits
independent SL(2, ) transformations of λ and λ̃ and allows α λ λ( , ˜) to be complex.

It has been suggested that the BMS group can be extended by supplementing globally
well-defined SL(2, ) rotations with any local conformal transformations of the sphere
[8, 19, 29]. This leads to an enhanced set of (singular) rotations, known as superrotations, on
the space of null generators of ℐ , which contains two copies of the Virasoro algebra at the
infinitesimal level [30].

On ℐ , the radiative information from the interior of the space-time is controlled by a
single complex function taking values in  −( 3, 1), which we denote by σ λ λu( , , ˜)0 2. The
energy flux from the interior of the space-time is encoded in the Bondi news function [3],

λ λ σ σ= ∂
∂

≡( )N u
u

, , ˜ ˙ , (2.4)
0

0

taking values in  −( 4, 0). The news function has long been regarded as fundamental to
studying quantum gravity on ℐ, since it encodes the asymptotic ‘radiative modes’ of the
gravitational field [5, 6]. Hence, a description of scattering states at ℐ should encode
scattering data in terms of ‘insertions’ of news functions.

It is worth noting that the coordinate u is naturally conjugate to the ‘frequency’ of on-shell
momentum eigenstates of massless particles. To define this, in place of the standard spinor
helicity variables Λ Λ=αα α αp ˜

˙ ˙ , where Λα and Λα˜ ˙ are defined up to Λ Λ Λ Λ∼ −r r( , ˜ ) ( , ˜ )1 , we
take a null momentum to be

ω λ λ=αα α αp ˜
˙ ˙

with the equivalence ω λ λ ω λ λ∼ − −r r r r( , , ˜) ( ˜ , , ˜ ˜)1 1 . Thus, on a (complex) Minkowski
background, massless momentum eigenstates appear on ℐ as plane waves ωe ui of frequency
ω, localized along the generator of ℐ at fixed angular location  λ λ ∈ ×( , ˜) 1 1.

Finally, we note that the extension of ℐ required to incorporate  = p2 extended
supersymmetry is straightforward: one replaces the complexified space of null generators by
 ×p p1| 1 | , where each factor may now be described by homogeneous coordinates
λ λ η= α( , )A a and λ λ η= α˜ ( ˜ , ˜ )A a˙ ˙ ˙ , respectively. The η η, ˜a ȧ are Grassmann (anticommuting)
coordinates, with = …a a p, ˙ 1, , . In this paper, we will take p = 4, corresponding to a parity
symmetric treatment of  = 8 supergravity in which only  = 4 supersymmetry is manifest.
In this setting, the news function (2.4) is replaced by a news supermultiplet Φ that takes
values in  (0, 0). The first component ϕ Φ= η η= =˜ 0 represents a scalar field at null infinity,

while the usual news tensor and its conjugate are encoded by the coefficients of η( )4 and η( ˜)4.
The multiplet terminates with a further scalar at order η η( ˜)4.

2 In the Newman–Penrose formalism, this is known as the ‘asymptotic shear’ [31].
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We abuse notation by also using ℐ to denote the total space of
  → ×(1, 1) 1|4 1 |4, trusting the reader to distinguish between this and the usual
bosonic conformal boundary by the context.

3. The model

Our model is a chiral CFT describing holomorphic maps λ λ Σ → ℐu( , , ˜) : from a Riemann
sphere Σ to the supersymmetric extension of complexified null infinity, taken to be the total
space of   → ×(1, 1) 1|4 1 |4 as above. We expect our model to serve as a description
for some effective theory on ℐ , analogous to a worldline formalism for a field theory. Σ
serves as the chiral complexification of the usual worldline.

In order to implement the  ×GL(1, ) GL(1, ) scaling on ℐ associated with (2.1) at
the level of Σ, we introduce two line bundles   Σ→, ˜ of degree ⩾d d, ˜ 0, respectively. The
basic fields of the model are then

    Ω Σ λ Ω Σ λ Ω Σ∈ ⊗ ∈ ⊗ ∈ ⊗( ) ( )( )u , ˜ , , , ˜ , ˜ ,A A
0 0 2 4 ˙ 0 2 4

which describe the pullbacks to Σ of homogeneous coordinates on ℐ . We choose the chiral
action

∫π
ν λ ν λ= ∂ + ∂ + ∂

Σ
S w u

1

2
¯ ¯ ˜ ¯ ˜ (3.1)A

A
A

A1
˙

˙

for these fields, where ν νw{ , , ˜ }A Ȧ are each (1,0)-forms on the worldsheet, with gauge charges
opposite those of λ λu{ , , ˜ }A Ȧ , respectively. These are Lagrange multipliers that ensure the
map to ℐ is holomorphic. We also introduce fields ψA and ψ̃ Ȧ of opposite statistics to λA and

λ̃ Ȧ, together with their conjugates ψ̄ A and ψ̃̄ Ȧ, respectively. Each of these fields is a
worldsheet spinor, neutral under both GL(1, ) scalings. Their action is

∫π
ψ ψ ψ ψ= ∂ + ∂

Σ
S

1

2
¯ ¯ ˜̄ ¯ ˜ (3.2)A

A
A

A2
˙

˙

and the combined action +S S1 2 is invariant under the fermionic transformations

δψ ε λ δψ ε ϵ λ δν ε ψ ε δ ϵ ψ= = = −α αβ
β α

αβ
α, ¯ , ¯ , (3.3)A A

A A A
1 2 1 2 ˙

with similar transformations for the tilded fields. All other fields remain invariant.
To gauge these fermionic symmetries we include bosonic ghosts

Ω Σ∈ ⊗ −s K( , )1,2 0 1 2 1 and Ω Σ∈ ⊗ −s K˜ ( , ˜ )1,2 0 1 2 1 together with their antighosts r1,2

and r̃1,2. We also include fermionic ghosts Ω Σ∈n, ñ ( )0 and antighosts Ω Σ∈ Km, m̃ ( , )0

associated to gauging the  ×GL(1, ) GL(1, ) transformations. The ghost action is

∫π
= ∂ + ∂ + ∂ + ∂

Σ
S r s r s

1

2
¯ ˜ ¯ ˜ m ¯n m̃ ¯ñ . (3.4)a

a
a

a
3

The final ingredient is a conjugate pair of fermionic fields  ξ Ω Σ∈ ⊗ −( , ( ˜ ) )0 1 and
 χ Ω Σ∈ ⊗ ⊗K( , ˜ )0 with action

∫π
χ ξ= ∂

Σ
S

1

2
¯ . (3.5)4

The role of these fields will be explained below.
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We take the BRST operator to be3

⎡⎣ ⎤⎦
∮ ν λ χ ξ ν λ χ ξ

λ ψ λ ψ λ ψ λ ψ

= − + + + − + + +

+ + + +

( )( )Q w u r s w u r s

s s s s

n ñ ˜ ˜ ˜ ˜

¯ ˜ ˜ ¯̃ ˜ ˜ ˜ . (3.6)

A
A a

a A
A a

a

A
A

A
A

BRST
˙

˙

1 2 1 ˙
˙ 2

This includes gaugings of the fermionic symmetries above as well as the gaugings associated
to  and ̃. It is straightforward to check that QBRST is nilpotent and anomaly free. For
example, there is a potential GL(1, ) anomaly aGL(1) associated with the line bundle . This
is given by the sum of squares of the fields’ GL(1, )-charges, weighted by a sign for their
respective statistics:

a ∑= − = + − + − =νλ χξq( 1) 1 (2 4) 2 1 0.
i

F
i wu rsGL(1)
2i

The anomalies associated with ̃ and  × ˜ vanish by identical calculations. For
completeness, we also note that the central charge of this chiral CFT is given by4:

c = + − + − − − − = −νλ ψψ νλ ψψ χξ2 3(2 4) 3(2 4) 4 4 2 20.wu rs rs, ¯ ˜ ˜, ¯̃ ˜ , ˜ ˜ mn, m̃ñ

BRST closed vertex operators are built out of the worldsheet fields in such a way as to
have vanishing charge under  and ̃, and be invariant under the fermionic transformations
(3.3). The simplest such operators are gauge-invariant functions Φ Φ λ λ= u( , , ˜) of the target
space coordinate fields that have vanishing worldsheet conformal weight. Crucially, these
operators encode the energy flux through ℐ , so their correlation functions should contain
information about the bulk space-time. Expanding Φ in the fermionic coordinates on ℐ gives

Φ λ λ ϕ η η

η η ϕ

= + ⋯ + + ⋯ + + ⋯

+

− −

− −

( ) ( )

( )

u N N, , ˜ ( ) ˜ ˜

( ) ˜ ˜ , (3.7)

(0,0) (0,0)
4

( 4,0)
4

(0, 4)

4 4
( 4, 4)

where subscripts denote weights with respect to λ λ( , ˜) and the component fields are functions
only of the bosonic coordinates. In particular, −N( 4,0) represents the Bondi news function
(2.4), encoding the radiative data of a negative helicity graviton, while −Ñ(0, 4) is the news
function for the positive helicity graviton. The other components represent analogous ‘news
functions’ for the other particle content of  = 8 supergravity; for instance the 28
components with two more ηs than η̃s represent negative helicity photons, while the 70
components with equal numbers of η and η̃s are scalars5. We note that the vertex operators of
our worldsheet CFT are not constrained to have vanishing conformal weight, so there will be
infinite towers of states beyond these simplest ones. We will see below that correlation
functions of arbitrarily many Φ λ λu( , , ˜) operators do not excite these other states. It would be
interesting to explore their meaning in detail.

The bosonic antighost fields r r, ˜ have zero modes when >d d, ˜ 0. To make sense of the
path-integral measure we must insert picture changing operators (PCOs) to absorb these zero
modes:

3 Here we use the standard notation ϵ〈 〉 = αβ
α βab a b , ϵ= αβ

α βab a b[ ˜ ˜] ˜ ˜
˙ ˙ ˙ ˙

.
4 Non-vanishing c corresponds to a non-vanishing Virasoro anomaly, but as there is no gauging of gravity on Σ (i.e.,
no bc-ghost system) the role of such an anomaly is unclear.
5 Encoding the  = 8 gravitational multiplet in this way breaks the SU(8) R-symmetry group to a ×SU(4) SU(4)
subsector (in Lorentzian signature) where the two factors are related by parity symmetry.
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⎡⎣ ⎤⎦Υ δ δ λ ψ λ ψ Υ δ δ λ ψ λ ψ= = ( ) ( )r r r r( ) ( ) ¯ , ˜ ˜ ˜ ˜ ˜̄ ˜ ˜ . (3.8)A
A

A
A

1 2 1 2 ˙
˙

Insertions of Υ (Υ̃ ) absorb d2 ( d2 ˜) zero modes of the r r,1 2 (r r˜ , ˜1 2) antighosts. As usual, the
correlation function doesnʼt depend on the location of the PCOs.

We must now pick a measure with which to integrate over the moduli space of vertex
operator locations. This will reveal the role of the ξχ system. Consider the composite operator

χw . This is an uncharged fermionic quadratic differential on the worldsheet, and is BRST
closed6. In the presence of vertex operators at points Σ⋯ ∈x x{ , , }n1 , it has −n 3 zero
modes. As usual in string theory, if μ{ }j form a basis of Beltrami differentials on the
punctured worldsheet, we can construct a top holomorphic form on the moduli space of these
punctures as χ μ∏ =

− w( | )j
n

j1
3 , the bracket denoting integration over Σ. This choice of measure

places an important constraint on the possible degrees of the line bundles  and ̃. Since χ
has + −d d̃ 1 zero modes, the correlation function vanishes unless

+ = −d d n˜ 2, (3.9)

As in [32], this amounts to the requirement that  ⊗ ≅ + ⋯ +K x x˜ ( )n1 .
The simplest correlation function in our model is thus



∫

Φ σ χ μ Υ Υ

Φ σ χ σ Φ σ

= ∏ ∏ ∏ ∏

= ∏ ∏
Σ

= = = =

= =

( )w( ) ˜

( ) ( ) ˙ ( ) , (3.10)

n d i
n

i j
n

j k
d

k l
d

l

i i j
n

j j

, 1 4 1 1

˜

1
3

4

where Φ Φ= ∂˙ u takes values in  − −( 1, 1) on ℐ and 〈〈⋯〉〉 denotes a correlator in the
presence of the PCOs.

4. Symmetries and Ward identities

We expect that all the symmetries of ℐ have a realization in terms of charges on Σ, which act
on correlators such as (3.10). The simplest such symmetry is the Poincaré group, which is
generated by the charges

 ∮ ∮λ σ ν σ λ σ λ σ σ= + =β
α

α
β αα

α αQ a Q b w( ) ( ) c. c. and ( ) ˜ ( ) ( ), (4.1)SL(2, ) T
˙

˙

where β
αa and ααb ˙ are constant and the former is traceless. It is easy to see that these charges

commute with the action and are bona fide symmetries of the model, just as the Poincaré
group is an asymptotic symmetry of every asymptotically flat space-time.

However, as discussed in section 2, there is a larger symmetry group on ℐ : the infinite
dimensional BMS group, built from Lorentz transformations and supertranslations. The latter
are generated on Σ by charges

∮ λ λ σ= ( )Q f w, ˜ ( ), (4.2)ST

where f is a function of weight one in both λ and λ̃7. Unlike the Poincaré charges (4.1), the
general supertranslation charge (4.2) will have poles, so its commutator with the action will
be non-vanishing at these poles. This is expected, since our realization of ℐ as a vector
bundle over  ×1 1 endows it with more structure than necessary. In particular, the choice

6 In particular χ ≠Q w T{ , }BRST , so χw cannot be interpreted as a composite b ghost.
7 QST generates ‘complexified’ supertranslations on ℐ ; to restrict to the real ℐ, we set λ λ=˜ ¯ so that f becomes a
smooth function on 1, defining a real supertranslation.
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of an origin for this vector bundle is equivalent to a choice of classical vacuum from the
perspective of asymptotic quantization [5, 6]; since supertranslations map one vacuum to an
inequivalent vacuum, we shouldnʼt expect them to be exact symmetries of our model.
Nonetheless, QST does give non-trivial information in the form of a Ward identity containing
information about soft gravitons [12, 15].

In particular, consider the supertranslation given by the charge

∮ λ λ σ λ λ
λ λ σ λ σ λ σ

λ σ
= =

α β α
α β α( ) ( )Q f w f

a b

a s b s s
, ˜ ( ), , ˜

˜ ( ) ( ) ˜ ( )

( )
, (4.3)s

ST
(1) (1) (1)

˙
˙

where λ λ( , ˜ )s s is a fixed point on the space of generators of ℐ associated with the insertion of
a soft graviton. Note that f (1) has weight (1,1) in λ σ λ σ( ( ), ˜ ( )) as required for a
supertranslation, and weight −( 3, 1) in λ λ( , ˜ )s s as for the asymptotic shear of a soft graviton.
Inserting this charge into (3.10), its effect is to differentiate each vertex operator Φi in the u-
direction. Assuming that these operators are momentum eigenstates of frequency (or energy)
ωi, this results in a Ward identity

∫∏ ∏ ∑Φ σ χ σ Φ σ ω λ σ λ σ=
Σ

= = =
( )Q f( ) ( ) ˙ ( ) ( ), ˜( ) , (4.4)

i

i

j

n

j j

i

n

i i i n dST
(1)

1

3

4 1

(1)
,

where on the left-hand side, the contour in QST
(1) is taken along λ σ ϵ〈 〉 =s| ( ) | . This is

equivalent to the Ward identity found in [12] for the supertranslations generated by (4.3).
More specifically, suppose that we represent the one-particle state by the explicit

momentum eigenstate

∫Φ
ω

δ λ λ σ δ λ λ σ= − − ω σ( )( )
t t

t t
t t

d d˜

˜
( ) ˜ ˜ ˜( ) e . (4.5)i

i i

i i i
i i i i i i

t t u2 4 2 4 ˜ ( )i i i i

Then on the support of the delta functions in these vertex operators, the action of QST
(1) on the

correlator reads



∫∑ ∏ ∏

∑

λ
ω

λ σ λ σ λ σ
λ σ

Φ σ χ σ Φ σ

ω=

α β α
α β α

Σ
= = =

=

a b

a s b s
t t

s

s i

s i

a i b i

a s b s

˜
˜

( ) ( ) ˜ ( )

( )
( ) ( ) ˙ ( )

[ ]
. (4.6)

i

n
s

i i i
i i i

i k

k

j

n

j j

i

n

i n d

1

˙
˙

1

3

4

1

,

This is precisely Weinbergʼs soft graviton theorem as re-derived in the context of
supertranslations acting on the S-matrix in [15]. In our model, the universal soft graviton
factor arises from the action of a charge generating a supertranslation, which effectively
creates the soft graviton at the position  λ λ ∈ ×( , ˜ )s s

1 1.
More general supertranslations (having additional or higher-order poles) are related to the

creation of multiple soft gravitons. Our model also includes supersymmetric extensions of
supertranslations, which correspond to other soft particles in the spectrum of  = 8 super-
gravity. Hence, the supertranslations (4.2) combined with QSL(2, ) generate the action of the
BMS group in our model.

Interestingly, we can easily incorporate the superrotations of the extended BMS group as
well. The relevant charge on Σ is
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∮ λ λ λ σ ν σ λ λ λ σ ν σ= +
β

α
α

β
β

α
α

β( ) ( )Q R R, ˜ ( ) ( ) ˜ , ˜ ˜ ( ) ˜ ( ) , (4.7)SR ˙

˙
˙

˙

where λ λ β
αR( , ˜) , λ λ β

αR( , ˜) ˙
˙ are traceless, weightless holomorphic functions of λ λ( , ˜). General

operators of this form suffer from normal ordering ambiguities, but a large interesting class
are free from such problems. For instance, consider (4.7) with

λ σ
λ σ

λ λ
= =β

α
β
α

α
β

R R
a

s a s
0, ˜ ( )

( )

˜ ˜
.

s s
˙
˙

˙
˙

A calculation similar to that which led to (4.6) gives the action of this charge on the correlator
with momentum eigenstates:

∫∏ ∏ ∑Φ σ χ σ Φ σ λ
λ

= − ∂
∂Σ

α
α= = =

Q
s i

s i

a i

a s
( ) ( ) ˙ ( )

[ ] ˜
˜

, (4.8)
i

i

j

n

j j

i

n

s
i

n dSR

1

3

4 1

˙
˙

,

where the contour for QSR is as before. The last line is the holomorphic subleading soft
graviton contribution recently discussed by Cachazo and Strominger [18]. It was conjectured
that this subleading contribution is related to the action of superrotations; (4.8) demonstrates
this explicitly at the level of charges acting on the correlator.

5. Scattering amplitudes

Having shown that our model has vertex operators naturally encoding the asymptotic
radiative degrees of freedom, and that the charges corresponding to the BMS group have a
natural action on its correlators, we now turn to the evaluation of the correlation functions
(3.10) themselves. First, notice that the PCO insertions only have non-trivial Wick contrac-
tions with other PCOs of the same type. The resulting correlation function on the PCOs can
then be computed using the arguments employed for PCOs in [33], resulting in

∏ ∏Υ Υ λ λ=
= =

( )˜ R( ) R ˜ , (5.1)
k

d

k

l

d

l

1 1

˜

where λR( ), λR( ˜) are the resultants of the maps

 λ Σ λ Σ→ →α α: , ˜ : , (5.2)1
˙

1

respectively [34]. Recall that the resultant R(λ) vanishes iff both λ σα ( *) vanish
simultaneously for some σ Σ∈* . The factor (5.1) thus ensures that the amplitude receives
contributions only when λ σ λ σα α( ( ), ˜ ( ))˙ is a well-defined map to  ×1 1.

Evaluating the remainder of the correlator with the choice of momentum eigenstates (4.5)
for Φ leads to

s
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟


 

∫

∏ ∑ ∏

λ λ λ λ σ σ

ω σ

δ ω σ σ δ λ λ σ δ λ λ σ

=
∏ ∏

×

⋯

∏

− −

=
+

=
+

=

=

+ +

= =

( )
( )

( )( )

t t

t t t t t t

d d ˜

vol * *

R( )R ˜

˜ D

˜ ( ) D d d˜ ( ) ˜ ˜ ˜( ) . (5.3)

n d
r
d

r s
d

s n

j j j j j

a

d d

i

n

i i i a i

i

n

i i i i i i i i i

,
1
1 2 4 0

1

˜ 1 2 4 0
4

1,2,3

1

˜ 1

1 1

2 4 2 4

Here, the measure in the first line is over the zero modes of the maps (5.2), while the quotient
by two *-freedoms reflects the rescaling symmetry associated with  and ̃. The
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σ σ σ=α ( , )i i i
0 1 are homogeneous coordinates on Σ, which have SL(2, )-invariant

contraction ϵ σ σ =αβ
α β i j( )i j . The Vandermonde determinant

∏σ σ⋯ =
⩽ < ⩽

i j: ( )n

i j n

4

4

is produced by the −n 3 χ-insertions, and σ σ σ=D : ( d )i i i is the natural weight +2
holomorphic measure on Σ. Finally, the first set of δ-functions in the second line arises by
performing the integral over zero modes for the map component Σ →u : ,

s
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫ ∑ ∏ ∑ω σ δ ω σ=+ +

= =

+ +

=

u t t u t td exp i ˜ ( ) ˜ ( ) ,d d

i

n

i i i i

a

d d

i

n

i i i a i
˜ 1 0

1 1

˜ 1

1

for s{ }a a basis of  Σ ⊗H ( , ˜ )0 .
The expression (5.3) for n d, can be manipulated into a more recognizable form. Using

the constraint (3.9), one can show that (see [32, 35])

s
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∫∏ ∑ ∏δ ω σ
σ σ

δ ω
σ σ

=
⋯

−
∏=

+ +

= = ≠
t t r t t

r˜ ( )
1

d ˜
( )

.
a

d d

i

n

i i i a i
n i

n

i i i

j i i j1

˜ 1

1 1 1

Inserting this identity into (5.3) and working on the support of the various delta-functions
produces an equivalent expression for the correlator:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

  
∫ λ λ

λ λ δ ω
σ σ

σ δ λ λ σ δ λ λ σ

=
∏ ∏

× ×
∏ −

∏

× − −

=
+

=
+

=
≠( )

( )

( )( )

r

r
t t

r

t t t t

d d ˜

vol SL(2, ) * *
R( )R ˜ d ˜

( )

D d d˜ ( ) ˜ ˜ ˜( ) . (5.4)

n d
r
d

r s
d

s
i
n

i i i

j i i j

i i i i i i i i i

,
1
1 2 4 0

1
˜ 1 2 4 0

3 1

2 4 2 4

Using one of the *-freedoms to fix the r-integral, this expression is equal to a representation
derived in [34] of the Cachazo–Skinner formula for the tree-level S-matrix of  = 8
supergravity [36]. Hence, we confirm that the simplest correlation function of the model, with
vertex operators represented by momentum eigenstates, produces the tree-level scattering
amplitudes of gravity.

6. Conclusions

In this paper we have constructed a QFT living on the complexification of ℐ. We have shown
that its states include modes corresponding to the radiative data of bulk supergravity and have
investigated the Ward identities corresponding to the action of the (extended) BMS group.
Finally, we showed that correlation functions in this theory reproduce the classical pertur-
bative S-matrix of  = 8 supergravity in a form originally obtained in [34, 36]. This theory
can be viewed as a holographic description of gravity in asymptotically flat space-time, valid
in the regime where classical supergravity is a good description in the bulk.

The boundary theory has been presented here in terms of a worldsheet description, and is
thus restricted to perturbation theory. It would clearly be interesting to obtain the target space
description of this theory. The model here is a close cousin of the twistor and ambitwistor
models of [33, 37], which are best understood as living in the asymptotic twistor spaces of an
asymptotically flat space-time. It also appears to be closely related to Schildʼs null strings
[38], which have arisen recently as a description of massless states in theories invariant under
the conformal Carroll group [39, 40].
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An important outstanding issue is the relevance of these ideas in higher dimensions.
While Weinbergʼs soft graviton theorem holds in arbitrary dimensions, as does the sub-
leading soft behavior at least at tree-level [41, 42], the asymptotic symmetry group of an
asymptotically flat space-time of dimension >d 4 does not admit supertranslations [43, 44].
It is intriguing that the current, tree-level, proofs of these higher-dimensional subleading soft
theorems make use of the scattering equation [45] which arise most naturally in higher
dimensional ambitwistor theory [46–48]. These and other issues will be explored elsewhere.
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