75 research outputs found

    Fumigant Toxicity and Oviposition Deterrency of the Essential Oil from Cardamom, Elettaria cardamomum, Against Three Stored—product Insects

    Get PDF
    Use of insecticides can have disruptive effects on the environment. Replacing the chemical compounds in these insecticides with plant materials, however, can be a safe method with low environmental risk. In the current study, chemical composition and insecticidal activities of the essential oil from cardamom, Elettaria cardamomum L. (Maton) (Zingiberales: Zingiberaceae) on the adults of three stored product pests was investigated. Results indicated that essential oil of E. cardamomum toxic to the bruchid beetle, Callosobruchus maculatus Fabricius (Coleoptera: Bruchidae), the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), and the flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Adults of E. kuehniella were more sensitive than the Coleoptera. Also, the highest mortality of these insects was seen after 12 hours. Results of the LT50 tests showed that the lethal time of mortality occurred between 10–20 hours in various test concentrations. Essential oil of E. cardamomum had a good efficacy on oviposition deterrence of C. maculatus females, too. The chemical constituents of the essential oils were analyzed by gas chromatography—mass spectrometry. The major constituents of cardamom were identified as 1,8-cineol, α-terpinyl acetate, terpinene and fenchyl alcohol. These results suggest that essential oil of E. cardamomum is a good choice for control of stored product pests

    In Vitro Control of Post-Harvest Fruit Rot Fungi by Some Plant Essential Oil Components

    Get PDF
    Eight substances that are main components of the essential oils from three Mediterranean aromatic plants (Verbena officinalis, Thymus vulgaris and Origanum vulgare), previously found active against some phytopathogenic Fungi and Stramenopila, have been tested in vitro against five etiological agents of post-harvest fruit decay, Botrytis cinerea, Penicillium italicum, P. expansum, Phytophthora citrophthora and Rhizopus stolonifer. The tested compounds were ÎČ-fellandrene, ÎČ-pinene, camphene, carvacrol, citral, o-cymene, Îł-terpinene and thymol. Citral exhibited a fungicidal action against P. citrophthora; carvacrol and thymol showed a fungistatic activity against P. citrophthora and R. stolonifer. Citral and carvacrol at 250 ppm, and thymol at 150 and 250 ppm stopped the growth of B. cinerea. Moreover, thymol showed fungistatic and fungicidal action against P. italicum. Finally, the mycelium growth of P. expansum was inhibited in the presence of 250 ppm of thymol and carvacrol. These results represent an important step toward the goal to use some essential oils or their components as natural preservatives for fruits and foodstuffs, due to their safety for consumer healthy and positive effect on shelf life extension of agricultural fresh products

    ANTIFUNGAL ACTIVITY OF HEXANAL AS DEPENDENT ON ITS VAPOR PRESSURE

    No full text
    • 

    corecore