806 research outputs found
Free energy determination of phase coexistence in model C60: A comprehensive Monte Carlo study
The free energy of the solid and fluid phases of the Girifalco C60 model are
determined through extensive Monte Carlo simulations. In this model the
molecules interact through a spherical pair potential, characterized by a
narrow and attractive well, adjacent to a harshly repulsive core. We have used
the Widom test particle method and a mapping from an Einstein crystal, in order
to estimate the absolute free energy in the fluid and solid phases,
respectively; we have then determined the free energy along several isotherms,
and the whole phase diagram, by means of standard thermodynamic integrations.
We highlight how the interplay between the liquid-vapor and the liquid-solid
coexistence conditions determines the existence of a narrow liquid pocket in
the phase diagram, whose stability is assessed and confirmed in agreement with
previous studies. In particular, the critical temperature follows closely an
extended corresponding-states rule recently outlined by Noro and Frenkel [J.
Chem. Phys. 113:2941 (2000)].
We discuss the emerging "energetic" properties of the system, which drive the
phase behavior in systems interacting through short-range forces [A. A. Louis,
Phil. Trans. R. Soc. A 359:939 (2001)], in order to explain the discrepancy
between the predictions of several structural indicators and the results of
full free energy calculations, to locate the fluid phase boundaries.
More generally, we aim to provide extended reference data for calculations of
the free energy of the C60 fullerite in the low temperature regime, as for the
determination of the phase diagram of higher order fullerenes and other
fullerene-related materials, whose description is based on the same model
adopted in this work.Comment: RevTeX, 11 pages, 9 figure
Structure and phase behavior of colloidal dumbbells with tunable attractive interactions
We investigate thermodynamic and structural properties of colloidal dumbbells
in the framework provided by the Reference Interaction Site Model (RISM) theory
of molecular fluids and Monte Carlo simulations. We consider two different
models: in the first one we set identical square-well attractions on the two
tangent spheres composing the molecule (SW-SW model); in the second scheme, one
of square-well interactions is switched off (HS-SW model). Appreciable
differences emerge between the physical properties of the two models.
Specifically, the behavior of SW-SW structure factors points
to the presence of a gas-liquid coexistence, as confirmed by subsequent fluid
phase equilibria calculations. Conversely, the HS-SW develops a low-
peak, signaling the presence of aggregates; such a process destabilizes the
gas-liquid phase separation, promoting at low temperatures the formation of a
cluster phase, whose structure depends on the system density. We further
investigate such differences by studying the phase behavior of a series of
intermediate models, obtained from the original SW-SW by progressively reducing
the depth of one square-well interaction. RISM structural predictions
positively reproduce the simulation data, including the rise of ) in
the SW-SW model and the low- peak in the HS-SW structure factor. As for the
phase behavior, RISM agrees with Monte Carlo simulations in predicting a
gas-liquid coexistence for the SW-SW model (though the critical parameters
appears overestimated by the theory) and its progressive disappearance moving
toward the HS-SW model.Comment: 12 pages, 13 figures, 1 table, 78 reference
Propulsion System Testing for a Long-Endurance Solar-Powered Unmanned Aircraft
The increase in popularity of unmanned aerial vehicles (UAVs) has been driven by their use in civilian, education, government, and military applications. However, limited on-board energy storage significantly limits flight time and ultimately usability. The propulsion system plays a critical part in the overall energy consumption of the UAV; therefore, it is necessary to determine the most optimal combination of possible propulsion system components for a given mission profile, i.e. propellers, motors, and electronic speed controllers (ESC). Hundreds of options are available for the different components with little performance specifications available for most of them. In order to determine the performance specifications, a propulsion system testing apparatus has been developed and validated. This testing apparatus was designed to measure the performance and efficiency parameters of electric propulsion system components (propellers, motors, and ESC) while maintaining similar air flow characteristics in either a wind tunnel or on a moving automotive platform. Validation tests of four propellers are presented. All four propellers were tested under static conditions, and two were tested under advancing flow conditions where the testing apparatus was used on an automotive platform. The results show that this propulsion testing system provides for holistic testing of all possible compatible electric propulsion system components in a flight-like environment. Data from this system will be used in a mission-based propulsion system optimizer, currently in development, to select the best combination of components for a long-endurance solar-powered unmanned aircraft
Theory and simulation of short-range models of globular protein solutions
We report theoretical and simulation studies of phase coexistence in model
globular protein solutions, based on short-range, central, pair potential
representations of the interaction among macro-particles. After reviewing our
previous investigations of hard-core Yukawa and generalised Lennard-Jones
potentials, we report more recent results obtained within a DLVO-like
description of lysozyme solutions in water and added salt. We show that a
one-parameter fit of this model based on Static Light Scattering and
Self-Interaction Chromatography data in the dilute protein regime, yields
demixing and crystallization curves in good agreement with experimental
protein-rich/protein-poor and solubility envelopes. The dependence of cloud and
solubility points temperature of the model on the ionic strength is also
investigated. Our findings highlight the minimal assumptions on the properties
of the microscopic interaction sufficient for a satisfactory reproduction of
the phase diagram topology of globular protein solutions.Comment: 17 pages, 8 figures, Proc. of Conference "Structural Arrest
Transitions in Colloidal Systems with Short-Range Attractions", Messina
(ITALY) 17-20 December 200
Theoretical description of phase coexistence in model C60
We have investigated the phase diagram of the Girifalco model of C60
fullerene in the framework provided by the MHNC and the SCOZA liquid state
theories, and by a Perturbation Theory (PT), for the free energy of the solid
phase. We present an extended assessment of such theories as set against a
recent Monte Carlo study of the same model [D. Costa et al, J. Chem. Phys.
118:304 (2003)]. We have compared the theoretical predictions with the
corresponding simulation results for several thermodynamic properties. Then we
have determined the phase diagram of the model, by using either the SCOZA, or
the MHNC, or the PT predictions for one of the coexisting phases, and the
simulation data for the other phase, in order to separately ascertain the
accuracy of each theory. It turns out that the overall appearance of the phase
portrait is reproduced fairly well by all theories, with remarkable accuracy as
for the melting line and the solid-vapor equilibrium. The MHNC and SCOZA
results for the liquid-vapor coexistence, as well as for the corresponding
critical points, are quite accurate. All results are discussed in terms of the
basic assumptions underlying each theory. We have selected the MHNC for the
fluid and the first-order PT for the solid phase, as the most accurate tools to
investigate the phase behavior of the model in terms of purely theoretical
approaches. The overall results appear as a robust benchmark for further
theoretical investigations on higher order C(n>60) fullerenes, as well as on
other fullerene-related materials, whose description can be based on a
modelization similar to that adopted in this work.Comment: RevTeX4, 15 pages, 7 figures; submitted to Phys. Rev.
Performance Testing of APC Electric Fixed-Blade UAV Propellers
The increase in popularity of unmanned aerial vehicles (UAVs) has been driven by their use in civilian, education, government, and military applications. However, limited on-board energy storage significantly limits flight time and ultimately usability. The propulsion system plays a critical part in the overall energy consumption of the UAV; therefore, it is necessary to determine the most optimal combination of possible propulsion system components for a given mission profile, i.e., propellers, motors, and electronic speed controllers (ESC). Hundreds of options are available for the different components with little performance specifications available for most of them. APC Thin Electric propellers were identified as the most commonly used type of commercial-off-the-shelf propeller. However, little performance data exist in the open literature for the APC Thin Electric propellers with larger diameters. This paper describes the performance testing of 17 APC Thin Electric 2-bladed, fixed propellers with diameters of 12 to 21 in with various pitch values. The propellers were tested at rotation rates of 1,000 to 7,000 RPM and advancing flows of 8 to 80 ft/s, depending on the propeller and testing equipment limitations. Results are presented for the 17 propellers tested under static and advancing flow conditions with several key observations being discussed. The data produced will be available for download on the UIUC Propeller Data Site and on the Unmanned Aerial Vehicle Database
Ab initio study of the vapour-liquid critical point of a symmetrical binary fluid mixture
A microscopic approach to the investigation of the behaviour of a symmetrical
binary fluid mixture in the vicinity of the vapour-liquid critical point is
proposed. It is shown that the problem can be reduced to the calculation of the
partition function of a 3D Ising model in an external field. For a square-well
symmetrical binary mixture we calculate the parameters of the critical point as
functions of the microscopic parameter r measuring the relative strength of
interactions between the particles of dissimilar and similar species. The
calculations are performed at intermediate () and moderately long
() intermolecular potential ranges. The obtained results agree
well with the ones of computer simulations.Comment: 14 pages, Latex2e, 5 eps-figures included, submitted to
J.Phys:Cond.Ma
- …