35,684 research outputs found

    Effect of Q&P Process on 0.15C-MnSi Steels

    Get PDF
    The present study is focused on analyzing the effect of Mn amount on two experimental steel compositions, specially designed for Q&P (Quenching and Partitioning), 0.15C-2.5Mn-1.5Si and 0.15C-3Mn-1.5Si without significant contribution of Al. Two-Step Q&P thermal treatments were performed at laboratory scale in a quenching dilatometer Bähr DIL805A/D. The fractions of retained austenite were evaluated by X-ray diffraction techniques. The mechanical properties of the Q&P samples were evaluated, a strong dependence of strength, uniform elongation and strain hardening values on process parameters has been found. Higher uniform elongation were related to higher residual austenite contents. The 0.15C-3Mn-1.5Si steel showed systematically the largest mechanical values with respect to the 0.15C-2.5Mn-1.5Si steel.Peer ReviewedPostprint (published version

    Characterization of strain-induced precipitation in Inconel 718 superalloy

    Get PDF
    © 2016 ASM International Inconel 718 presents excellent mechanical properties at high temperatures, as well as good corrosion resistance and weldability. These properties, oriented to satisfy the design requirements of gas turbine components, depend on microstructural features such as grain size and precipitation. In this work, precipitation-temperature-time diagrams have been derived based on a stress relaxation technique and the characterization of precipitates by scanning electron microscopy. By using this methodology, the effect of strain accumulation during processing on the precipitation kinetics can be determined. The results show that the characteristics of precipitation are significantly modified when plastic deformation is applied, and the kinetics are slightly affected by the amount of total plastic deformation.Peer ReviewedPostprint (author's final draft

    Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718

    Get PDF
    The hot deformation behavior of an IN718 superalloy was studied by isothermal compression tests under the deformation temperature range of 950–1100 °C and strain rate range of 0.001–1 s-1 up to true strains of 0.05, 0.2, 0.4 and 0.7. Electron backscattered diffraction (EBSD) technique was employed to investigate systematically the effects of strain, strain rate and deformation temperature on the subgrain structures, local and cumulative misorientations and twinning phenomena. The results showed that the occurrence of dynamic recrystallization (DRX) is promoted by increasing strain and deformation temperature and decreasing strain rate. The microstructural changes showed that discontinuous dynamic recrystallization (DDRX), characterized by grain boundary bulging, is the dominant nucleation mechanism in the early stages of deformation in which DRX nucleation occurs by twining behind the bulged areas. Twin boundaries of nuclei lost their ¿3 character with further deformation. However, many simple and multiple twins can be also regenerated during the growth of grains. The results showed that continuous dynamic recrystallization (CDRX) is promoted at higher strains and large strain rates, and lower temperatures, indicating that under certain conditions both DDRX and CDRX can occur simultaneously during the hot deformation of IN718.Peer ReviewedPostprint (author's final draft

    Fidelity Between Unitary Operators and the Generation of Gates Robust Against Off-Resonance Perturbations

    Full text link
    We perform a functional expansion of the fidelity between two unitary matrices in order to find the necessary conditions for the robust implementation of a target gate. Comparison of these conditions with those obtained from the Magnus expansion and Dyson series shows that they are equivalent in first order. By exploiting techniques from robust design optimization, we account for issues of experimental feasibility by introducing an additional criterion to the search for control pulses. This search is accomplished by exploring the competition between the multiple objectives in the implementation of the NOT gate by means of evolutionary multi-objective optimization

    Obfuscation-based malware update: A comparison of manual and automated methods

    Get PDF
    Indexación: Scopus; Web of Science.This research presents a proposal of malware classification and its update based on capacity and obfuscation. This article is an extension of [4]a, and describes the procedure for malware updating, that is, to take obsolete malware that is already detectable by antiviruses, update it through obfuscation techniques and thus making it undetectable again. As the updating of malware is generally performed manually, an automatic solution is presented together with a comparison from the standpoint of cost and processing time. The automated method proved to be more reliable, fast and less intensive in the use of resources, specially in terms of antivirus analysis and malware functionality checking times.http://univagora.ro/jour/index.php/ijccc/article/view/2961/112

    Duplex and superduplex stainless steels: microstructure and properties evolution by surface modification processes

    Get PDF
    The paper presents an overview of diffusion surface treatments, especially nitriding processes, applied to duplex and superduplex stainless steels in the last five years. Research has been done mainly to investigate different nitriding processes in order to optimize parameters for the most appropriate procedure. The scope has been to improve mechanical and wear resistance without prejudice to the corrosion properties of the duplex and superduplex stainless steels. Our investigation also aimed to understand the effect of the nitriding layer on the precipitation of secondary phases after any heating step.Peer ReviewedPostprint (published version
    corecore