13,989 research outputs found

    Andreev tunneling through a double quantum-dot system coupled to a ferromagnet and a superconductor: effects of mean field electronic correlations

    Full text link
    We study the transport properties of a hybrid nanostructure composed of a ferromagnet, two quantum dots, and a superconductor connected in series. By using the non-equilibrium Green's function approach, we have calculated the electric current, the differential conductance and the transmittance for energies within the superconductor gap. In this regime, the mechanism of charge transmission is the Andreev reflection, which allows for a control of the current through the ferromagnet polarization. We have also included interdot and intradot interactions, and have analyzed their influence through a mean field approximation. In the presence of interactions, Coulomb blockade tend to localized the electrons at the double-dot system, leading to an asymmetric pattern for the density of states at the dots, and thus reducing the transmission probability through the device. In particular, for non-zero polarization, the intradot interaction splits the spin degeneracy, reducing the maximum value of the current due to different spin-up and spin-down densities of states. Negative differential conductance (NDC) appears for some regions of the voltage bias, as a result of the interplay of the Andreev scattering with electronic correlations. By applying a gate voltage at the dots, one can tune the effect, changing the voltage region where this novel phenomenon appears. This mechanism to control the current may be of importance in technological applications.Comment: 12 pages, 11 figure

    Overcoming the su(2^n) sufficient condition for the coherent control of n-qubit systems

    Get PDF
    We study quantum systems with even numbers N of levels that are completely state-controlled by unitary transformations generated by Lie algebras isomorphic to sp(N) of dimension N(N+1)/2. These Lie algebras are smaller than the respective su(N) with dimension N^2-1. We show that this reduction constrains the Hamiltonian to have symmetric energy levels. An example of such a system is an n-qubit system. Using a geometric representation for the quantum wave function of a finite system, we present an explicit example that shows a two-qubit system can be controlled by the elements of the Lie algebra sp(4) (isomorphic to spin(5) and so(5)) with dimension ten rather than su(4) with dimension fifteen. These results enable one to envision more efficient algorithms for the design of fields for quantum-state engineering, and they provide more insight into the fundamental structure of quantum control.Comment: 13 pp., 2 figure

    The GTC exoplanet transit spectroscopy survey. VII. An optical transmission spectrum of WASP-48b

    Full text link
    We obtained long-slit optical spectroscopy of one transit of WASP-48b with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) spectrograph at the 10.4 m Gran Telescopio Canarias (GTC). We integrated the spectrum of WASP-48 and one reference star in several channels with different wavelength ranges, creating numerous color light curves of the transit. We fit analytic transit curves to the data taking into account the systematic effects present in the time series in an effort to measure the change of the planet-to-star radius ratio (Rp/RsR_p/R_s) across wavelength. After removing the transit model and systematic trends to the curves we reached precisions between 261 ppm and 455-755 ppm for the white and spectroscopic light curves, respectively. We obtained Rp/RsR_p/R_s uncertainty values between 0.8×1030.8 \times 10^{-3} and 1.5×1031.5\times 10^{-3} for all the curves analyzed in this work. The measured transit depth for the curves made by integrating the wavelength range between 530 nm and 905 nm is in agreement with previous studies. We report a relatively flat transmission spectrum for WASP-48b with no statistical significant detection of atmospheric species, although the theoretical models that fit the data more closely include of TiO and VO.Comment: 8 pages, 8 figures. Accepted for publication in Astronomy and Astrophysic

    Temporal stimulated intersubband emission of photoexcited electrons

    Full text link
    We have studied the transient evolution of electrons distributed over two levels in a wide quantum well, with the two levels below the optical phonon energy, after an ultrafast interband excitation and cascade emission of optical phonons. If electrons are distributed near the top of the passive region, a temporal negative absorption appears to be dominant in the intersubband response. This is due to the effective broadening of the upper level state under the optical phonon emission. We have then considered the amplification of the ground mode in a THz waveguide with a multiquantum well placed at the center of the cavity. A huge increase of the probe signal is obtained, which permits the temporal stimulated emission regime of the photoexcited electrons in the THz spectral region.Comment: 5 pages, 5 figures, brief repor

    Snake orbits and related magnetic edge states

    Full text link
    We study the electron motion near magnetic field steps at which the strength and/or sign of the magnetic field changes. The energy spectrum for such systems is found and the electron states (bound and scattered) are compared with their corresponding classical paths. Several classical properties as the velocity parallel to the edge, the oscillation frequency perpendicular to the edge and the extent of the states are compared with their quantum mechanical counterpart. A class of magnetic edge states is found which do not have a classical counterpart.Comment: 8 pages, 10 figure

    Rotating Superconductors and the London Moment: Thermodynamics versus Microscopics

    Full text link
    Comparing various microscopic theories of rotating superconductors to the conclusions of thermodynamic considerations, we traced their marked difference to the question of how some thermodynamic quantities (the electrostatic and chemical potentials) are related to more microscopic ones: The electron's the work function, mean-field potential and Fermi energy -- certainly a question of general import. After the correct identification is established, the relativistic correction for the London Moment is shown to vanish, with the obvious contribution from the Fermi velocity being compensated by other contributions such as electrostatics and interactions.Comment: 23 pages 4 fi

    Casimir effect in the nonequilibrium steady-state of a quantum spin chain

    Full text link
    We present a fully microscopics-based calculation of the Casimir effect in a nonequilibrium system, namely an energy flux driven quantum XX chain. The force between the walls (transverse-field impurities) is calculated in a nonequilibrium steady state which is prepared by letting the system evolve from an initial state with the two halves of the chain prepared at equilibrium at different temperatures. The steady state emerging in the large-time limit is homogeneous but carries an energy flux. The Casimir force in this nonequilibrium state is calculated analytically in the limit when the transverse fields are small. We find that the the Casimir force range is reduced compared to the equilibrium case, and suggest that the reason for this is the reduction of fluctuations in the flux carrying steady state.Comment: 11 page

    OB Stars in the Solar Neighborhood I: Analysis of their Spatial Distribution

    Get PDF
    We present a newly-developed, three-dimensional spatial classification method, designed to analyze the spatial distribution of early type stars within the 1 kpc sphere around the Sun. We propose a distribution model formed by two intersecting disks -the Gould Belt (GB) and the Local Galactic Disk (LGD)- defined by their fundamental geometric parameters. Then, using a sample of about 550 stars of spectral types earlier than B6 and luminosity classes between III and V, with precise photometric distances of less than 1 kpc, we estimate for some spectral groups the parameters of our model, as well as single membership probabilities of GB and LGD stars, thus drawing a picture of the spatial distribution of young stars in the vicinity of the Sun.Comment: 28 pages including 9 Postscript figures, one of them in color. Accepted for publication in The Astronomical Journal, 30 January 200
    corecore