1,537 research outputs found

    Renormalized Wick expansion for a modified PQCD

    Full text link
    The renormalization scheme for the Wick expansion of a modified version of the perturbative QCD introduced in previous works is discussed. Massless QCD is considered, by implementing the usual multiplicative scaling of the gluon and quark wave functions and vertices. However, also massive quark and gluon counter-terms are allowed in this mass less theory since the condensates are expected to generate masses. A natural set of expansion parameters of the physical quantities is introduced: the coupling itself and to masses mqm_q and mgm_g associated to quarks and gluons respectively. This procedure allows to implement a dimensional transmutation effect through these new mass scales. A general expression for the new generating functional in terms of the mass parameters mqm_q and mgm_g is obtained in terms of integrals over arbitrary but constant gluon or quark fields in each case. Further, the one loop potential, is evaluated in more detail in the case when only the quark condensate is retained. This lowest order result again indicates the dynamical generation of quark condensates in the vacuum.Comment: 13 pages, one figur

    Faddeev-Jackiw approach to gauge theories and ineffective constraints

    Get PDF
    The general conditions for the applicability of the Faddeev-Jackiw approach to gauge theories are studied. When the constraints are effective a new proof in the Lagrangian framework of the equivalence between this method and the Dirac approach is given. We find, however, that the two methods may give different descriptions for the reduced phase space when ineffective constraints are present. In some cases the Faddeev-Jackiw approach may lose some constraints or some equations of motion. We believe that this inequivalence can be related to the failure of the Dirac conjecture (that says that the Dirac Hamiltonian can be enlarged to an Extended Hamiltonian including all first class constraints, without changes in the dynamics) and we suggest that when the Dirac conjecture fails the Faddeev-Jackiw approach fails to give the correct dynamics. Finally we present some examples that illustrate this inequivalence.Comment: 21 pages, Latex. To be published in Int. J. Mod. Phys.

    Classical Noncommutative Electrodynamics with External Source

    Full text link
    In a U(1)⋆U(1)_{\star}-noncommutative (NC) gauge field theory we extend the Seiberg-Witten (SW) map to include the (gauge-invariance-violating) external current and formulate - to the first order in the NC parameter - gauge-covariant classical field equations. We find solutions to these equations in the vacuum and in an external magnetic field, when the 4-current is a static electric charge of a finite size aa, restricted from below by the elementary length. We impose extra boundary conditions, which we use to rule out all singularities, 1/r1/r included, from the solutions. The static charge proves to be a magnetic dipole, with its magnetic moment being inversely proportional to its size aa. The external magnetic field modifies the long-range Coulomb field and some electromagnetic form-factors. We also analyze the ambiguity in the SW map and show that at least to the order studied here it is equivalent to the ambiguity of adding a homogeneous solution to the current-conservation equation

    On the non-relativistic limit of charge conjugation in QED

    Full text link
    Even if at the level of the non-relativistic limit of full QED, C is not a symmetry, the limit of this operation does exist for the particular case when the electromagnetic field is considered a classical external object coupled to the Dirac field. This result extends the one obtained when fermions are described by the Schroedinger-Pauli equation. We give the expressions for both the C matrix and the C^\hat{C} operator for galilean electrons and positrons interacting with the external electromagnetic field. The result is relevant in relation to recent experiments with antihydrogen.Comment: 7 page

    1/N expansion of the D3-D5 defect CFT at strong coupling

    Get PDF
    We consider four dimensional U(N) N = 4 SYM theory interacting with a 3d N = 4 theory living on a co dimension-one interface and holographically dual to the D3-D5 system without flux. Localization captures several observables in this dCFT, including its free energy, related to the defect expectation value, and single trace 1/2-BPS composite scalars. These quantities may be computed in a hermitian one-matrix model with non polynomial single-trace potential. We exploit the integrable Volterra hierarchy underlying the matrix model and systematically study its 1/N expansion at any value of the 't Hooft coupling. In particular, the strong coupling regime is determined - up to non-perturbative exponentially suppressed corrections - by differential relations that constrain higher order terms in the 1/N expansion. The analysis is extended to the model with SU(N) gauge symmetry by resorting to the more general Toda lattice equations

    Diamagnetism around the Meissner transition in a homogeneous cuprate single crystal

    Full text link
    The in-plane diamagnetism around the Meissner transition was measured in a Tl2_2Ba2_2Ca2_2Cu3_3O10_{10} single crystal of high chemical and structural quality, which minimizes the inhomogeneity and disorder rounding effects on the magnetization. When analyzed quantitatively and consistently above and below the transition in terms of the Ginzburg-Landau (GL) approach with fluctuations of Cooper pairs and vortices, these data provide a further confirmation that the observed Meissner transition is a conventional GL superconducting transition in a homogeneous layered superconductor.Comment: 5 pages, including 3 figure
    • 

    corecore