5 research outputs found

    Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant HD-Zip transcription factors are modular proteins in which a homeodomain is associated to a leucine zipper. Of the four subfamilies in which they are divided, the tested members from subfamily I bind <it>in vitro </it>the same pseudopalindromic sequence CAAT(A/T)ATTG and among them, several exhibit similar expression patterns. However, most experiments in which HD-Zip I proteins were over or ectopically expressed under the control of the constitutive promoter 35S CaMV resulted in transgenic plants with clearly different phenotypes. Aiming to elucidate the structural mechanisms underlying such observation and taking advantage of the increasing information in databases of sequences from diverse plant species, an <it>in silico </it>analysis was performed. In addition, some of the results were also experimentally supported.</p> <p>Results</p> <p>A phylogenetic tree of 178 HD-Zip I proteins together with the sequence conservation presented outside the HD-Zip domains allowed the distinction of six groups of proteins. A motif-discovery approach enabled the recognition of an activation domain in the carboxy-terminal regions (CTRs) and some putative regulatory mechanisms acting in the amino-terminal regions (NTRs) and CTRs involving sumoylation and phosphorylation. A yeast one-hybrid experiment demonstrated that the activation activity of ATHB1, a member of one of the groups, is located in its CTR. Chimerical constructs were performed combining the HD-Zip domain of one member with the CTR of another and transgenic plants were obtained with these constructs. The phenotype of the chimerical transgenic plants was similar to the observed in transgenic plants bearing the CTR of the donor protein, revealing the importance of this module inside the whole protein.</p> <p>Conclusions</p> <p>The bioinformatical results and the experiments conducted in yeast and transgenic plants strongly suggest that the previously poorly analyzed NTRs and CTRs of HD-Zip I proteins play an important role in their function, hence potentially constituting a major source of functional diversity among members of this subfamily.</p

    Successful field performance in warm and dry environments of soybean expressing the sunflower transcription factor HB4

    Get PDF
    Ribichich, Karina Fabiana. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Instituto de Agrobiotecnología del Litoral Santa Fe, Argentina.Chiozza, Mariana. INDEAR/BIOCERES. Rosario, Argentina.Ávalos Britez, Selva. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino (EEA Pergamino). Pergamino, Buenos Aires, Argentina.Cabello, Julieta V. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Instituto de Agrobiotecnología del Litoral Santa Fe, Argentina.Arce, Augustin L. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Instituto de Agrobiotecnología del Litoral Santa Fe, Argentina.Watson, Gerónimo. INDEAR/BIOCERES. Rosario, Argentina.Arias, Claudia. Universidad Nacional de Rosario. CIFASIS. Rosario, Argentina.Portapila, Margarita. Universidad Nacional de Rosario. CIFASIS. Rosario, Argentina.Trucco, Federico. INDEAR/BIOCERES. Rosario, Argentina.Otegui, María Elena. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino (EEA Pergamino). Pergamino, Buenos Aires, Argentina.Chan, Raquel Lía. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Instituto de Agrobiotecnología del Litoral Santa Fe, Argentina.3142–3156Soybean yield is limited primarily by abiotic constraints. No transgenic soybean with improved abiotic stress tolerance is commercially available. We transformed soybean plants with genetic constructs able to express the sunflower transcription factor HaHB4, which confers drought tolerance to Arabidopsis and wheat. One line (b10H) carrying the sunflower promoter was chosen among three independent lines because it exhibited the best performance in seed yield, and was evaluated in the greenhouse and in 27 field trials in different environments in Argentina. In greenhouse experiments, transgenic plants showed increased seed yield under stress conditions together with greater epicotyl diameter, larger xylem area, and increased water use efficiency compared with controls. They also exhibited enhanced seed yield in warm and dry field conditions. This response was accompanied by an increase in seed number that was not compensated by a decrease in individual seed weight. Transcriptome analysis of plants from a field trial with maximum difference in seed yield between genotypes indicated the induction of genes encoding redox and heat shock proteins in b10H. Collectively, our results indicate that soybeans transformed with HaHB4 are expected to have a reduced seed yield penalty when cultivated in warm and dry conditions, which constitute the best target environments for this technology
    corecore