126 research outputs found

    How a colloidal paste flows – scaling behaviors in dispersions of aggregated particles under mechanical stress –

    Get PDF
    We have developed a novel computational scheme that allows direct numerical simulation of the mechanical behavior of sticky granular matter under stress. We present here the general method, with particular emphasis on the particle features at the nanometric scale. It is demonstrated that, although sticky granular material is quite complex and is a good example of a challenging computational problem (it is a dynamical problem, with irreversibility, self-organization and dissipation), its main features may be reproduced on the basis of rather simple numerical model, and a small number of physical parameters. This allows precise analysis of the possible deformation processes in soft materials submitted to mechanical stress. This results in direct relationship between the macroscopic rheology of these pastes and local interactions between the particles

    Osmotic pressure in polyelectrolyte solutions: cell-model and bulk simulations

    Get PDF
    The osmotic pressure of polyelectrolyte solutions as a function of concentration has been calculated by Monte Carlo simulations of a spherical cell model and by molecular dynamics simulations with periodic boundary conditions. The results for the coarse-grained polyelectrolyte model are in good agreement with experimental results for sodium polyacrylate and the cell model is validated by the bulk simulations. The cell model offers an alternative perspective on osmotic pressure and also forms a direct link to even simpler models in the form of the Poisson–Boltzmann approximation applied to cylindrical and spherical geometries. As a result, the non-monotonic behaviour of the osmotic coefficient seen in simulated salt-free solutions is shown not to rely on a transition between a dilute and semi-dilute regime, as is often suggested when the polyion is modelled as a linear flexible chain. The non-monotonic behaviour is better described as the combination of a finite-size effect and a double-layer effect. Parameters that represent the linear nature of the polyion, including an alternative to monomer concentration, make it possible to display a generalised behaviour of equivalent chains, at least at low concentrations. At high concentrations, local interactions become significant and the exact details of the model become important. The effects of added salt are also discussed and one conclusion is that the empirical additivity rule, treating the contributions from the polyelectrolyte and any salt separately, is a reasonable approximation, which justifies the study of salt-free solutions

    From colloidal dispersions to colloidal pastesthrough solid–liquid separation processes

    Get PDF
    Solid–liquid separation is an operation that starts with a dispersion of solid particles in a liquid and removes some of the liquid from the particles, producing a concentrated solid paste and a clean liquid phase. It is similar to thermodynamic processes where pressure is applied to a system in order to reduce its volume. In dispersions, the resistance to this osmotic compression depends on interactions between the dispersed particles. The first part of this work deals with dispersions of repelling particles, which are either silica nanoparticles or synthetic clay platelets, dispersed in aqueous solutions. In these conditions, each particle is surrounded by an ionic layer, which repels other ionic layers. This results in a structure with strong short-range order. At high particle volume fractions, the overlap of ionic layers generates large osmotic pressures; these pressures may be calculated, through the cell model, as the cost of reducing the volume of each cell. The variation of osmotic pressure with volume fraction is the equation of state of the dispersion. The second part of this work deals with dispersions of aggregated particles, which are silica nanoparticles, dispersed in water and flocculated by multivalent cations. This produces large bushy aggregates, with fractal structures that are maintained through interparticle surface– surface bonds. As the paste is submitted to osmotic pressures, small relative displacements of the aggregated particles lead to structural collapse. The final structure is made of a dense skeleton immersed in a nearly homogeneous matrix of aggregated particles. The variation of osmotic resistance with volume fraction is the compression law of the paste; it may be calculated through a numerical model that takes into account the noncentral interparticle forces. According to this model, the response of aggregated pastes to applied stress may be controlled through the manipulation of interparticle adhesion

    The equation of state of colloidal dispersions.

    Get PDF
    International audienceWe present a comparison of experimentally and theoretically determined osmotic pressures for various colloidal dispersions. Experimental data is collected from several different silica and polystyrene dispersions. The theoretical pressure determinations are based on the Primitive Model combined with the Cell Model and the physical quantities are calculated exactly using Monte Carlo simulations in the canonical and grand canonical ensemble

    The physics of liquid water

    Get PDF
    Liquid water is a liquid with extraordinary properties: it has a very high cohesion, and an exceptionally strong dielectric cohesion, yet it is a fluid at ambient temperature and pressure. It also has an open structure that is full of voids, especially so at low temperatures. Some of these properties are found in other fluids, but the combination of all these anomalies makes liquid water unique among all other fluids. It is thanks to these unusual properties that life evolved in water and nowhere else

    Filtration of precipitated silica aggregates: Length scales, percolation threshold and yielding behaviour

    Get PDF
    Reinforcing precipitated silica systems have a complex hierarchical structure consisting of a branched network made of connected clusters composed of small silica beads welded together into larger dense aggregates. Here, we study the evolution of such structural features during a filtration process. The typical behaviour is that the cakes formed at constant pressure do not reorganize at local scale during a filtration experiment. Accordingly, the creep resistance of a precipitated silica network is high. Overall, there is a percolation threshold, which appears when the branches are pushed into each other. Once this percolation path is reached, the cake withstands compression over more than a decade of applied pressure. Beyond, it seemed useful to make predictions of the filtration properties knowing the typical length scales – small silica beads, dense aggregates, and consolidation behaviour of the cake. A simple approach introducing the concept of an effective medium approximation into Darcy’s law was tested. This approach treats the network as a pseudo-continuum of porous medium built at two main length scales: the size of dense aggregates and a length scale representing the typical distance between the aggregates. The quality of the fit of experimental filtration rates by this simple model indicates that a description based on a continuous network made of two material phases is accurate
    corecore