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Abstract. We have developed a novel computational scheme that allows direct numerical simulation of the mechanical
behavior of sticky granular matter under stress. We presenthere the general method, with particular emphasis on the
particle features at the nanometric scale. It is demonstrated that, although sticky granular material is quite complexand is
a good example of a challenging computational problem (it isa dynamical problem, with irreversibility, self-organization
and dissipation), its main features may be reproduced on thebasis of rather simple numerical model, and a small number
of physical parameters. This allows precise analysis of thepossible deformation processes in soft materials submitted to
mechanical stress. This results in direct relationship between the macroscopic rheology of these pastes and local interactions
between the particles.
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INTRODUCTION

The case of sticky granular matter is far from new. It is
defined as solid particles dispersed in a fluid phase, with
hard-core and short-range attractive interaction between
the particles. It includes such important topics as slurries
[1], cements [2], ink [3], paints [4], all kind of pastes [5],
sandcastles [6], or blood [7]. Last, they form the bulk
of industrial and city effluents. Wet granular materials
[8] form a generic class of sticky granular matter. The
flow of these materials, when they are submitted to me-
chanical stress, is the most important issue common to
all these examples.

An important point to notice, is that most of the par-
ticle interactions in the dense colloidal suspensions are
noncentral forces, as they originate in surface interac-
tions. This is worth recalling here that systems with cen-
tral and noncentral forces may behave quite differently
[10]. Moreover, these interactions are non-permanent, as
they can be destroyed by stress. Material deformations
are then irreversible and dissipative, what corresponds to
a class of actual challenging computational problems.

Deformation of low volume fraction of dispersed par-
ticles is governed by particular scaling laws. This can be
exemplified through an ideal gas of particles compressed
under controlled energy. In this case, the Poisson’s adia-
batic law applies, namely :

P ∝ φ γ , (1)

relating pressureP to volume fractionφ . The value of the
adiabatic exponentγ is in the range 1.3∼ 1.7, depending
on the way the gas particles reallocate energy.

A fractal aggregate in a fluid medium is an example of
a non-ideal dispersion. The correlation length is then infi-
nite, hence the system is at a critical point, andφ is the or-
der parameter. Moreover, the thermodynamical field con-
jugated to the volume fraction is the external pressure.
The general "magnetic" relation describing how the sys-
tem loses criticality when a small field is applied, writes
here as the scaling law :

P ∝ φδ , (2)

with δ a critical exponent. This relation, deduced from
the general theory of the critical phenomena, is formally
similar to (1).

At last, for the highly concentrated solid particle dis-
persion in a continuous phase, the particles form com-
plex disordered patterns and the forces propagate along
particular paths - possibly fractal -, of connected parti-
cles. Therefore, response to external forces depend on
the internal structure of the network made with the solid
parts. Rheology of such strongly-flocculated dispersions
is complex, and little is known about possible general
laws relating stress and volume fraction [9].

The purpose of the present work is to discuss numeri-
cal models of disordered systems of hard particles inter-
acting through noncentral, non-permanent, forces, and to
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understand how such systems deform and flow when they
are submitted to external stresses.

NUMERICAL MODEL

We will discuss the model as a system of hard parti-
cles embedded in the ordinary 3-dimensional continu-
ous space [11]. It was also studied in the 2-dimensional
space, as it may represent experimental situations as
well (colloidal dispersions between glass plates [12]).
Variants were considered to know which features of the
model are relevant or not. They are briefly discussed be-
low.

As a matter of fact, the basic model is issued from
ideas of the discrete element method [13], used for gran-
ular matter modeling. Namely, each particle is regarded
as an individual hard element and actual microscopic
forces result from pair interaction. Hence, the solid phase
is essentially granular matter, except that the interaction
forces arenotdue to friction.

The dispersion.–

Basics.–

The incoming solid matter dispersed in the liquid con-
sists in monodispersed hard spheres of radiusa, and con-
fined into a finite box, with periodic boundary conditions
along two perpendicular directions, while fixed boundary
conditions are used in the third direction.

Variants.–

Other convex particle shapes can be considered (e.g.
platelets), with additional technical complications for the
treatment of the possible overlaps. A simple way is to
combine several spheres through unbreakable bonds in
order to make individual particles of about the desired
shape. In addition, the particles can be made rigid or
deformable according to the stiffness (infinite or finite)
of the permanent bonds.

Another point is polydisperse material. Tries with
Gaussian distributions show that this is irrelevant for
the constitutive equations. But more special distributions
(e.g. Pareto distribution) have not been studied so far.

Of course, periodic boundary conditions can be re-
placed by fixed boundary conditions if needed (e.g. sim-
ulation of a colloidal paste between two plates).

The bonds.–

Basics.–

Short-range attractive interaction between the parti-
cles results from Van der Waals interactions, local chem-
ical bonds (e.g. polycations), and screened electrostatic
forces. Formation of such attractive bonds between the
particles is modelled by creation of massless harmonic
springs – whose stiffness is characteristic of the poten-
tial curvature of the interaction potential –, whenever the
distance between two particle surfaces is less than the
equilibrium value,lo. This defines the energy unitEo as
the energy needed to compress the spring completely, as
well as the pressure unitPo ≡ Eo/πa3(lo/2a). ForEo of
order 1kBT at room temperature, anda in the range 3∼ 5
nm, one obtainsPo of order 1 bar.

During rearrangement of the system, a spring may
break whenever its length exceeds the threshold,lmax.
Such breakable springs is the numerical materialization
of the chemical bonds. The ratio between the energy
of a spring at the rupture threshold and the energy to
compress it completely (namely :Ed/Eo = (lmax/lo)2−
1, which is called the reduced disruptive energy) is a
fundamental non-dimensional parameter of the model.

Variants.–

Distribution of stiffness can be considered straightfor-
wardly. This can be particularly important in the case
where two or more different chemical counterions are
used for flocculation.

Non-harmonic springs can be considered as well. But
the relevant feature is the bottom of the attractive poten-
tial energy, therefore anharmonicity is not expected to
play significant role.

Location of the bonds.–

Basics.–

In the real systems, the number of bonds between two
particles is limited, either because the bonding energy
is finite or because of excluded volume effect on the
chemical bonds. We take this constraint into account
by considering that springs can attach only at definite
locations, calledpins, on the surface of each particle.
Only one bond can be attached to a given pin at the
same time. The pins are defined randomly (with the
uniform distribution) for each particle, once and for all
at the beginning of each simulation. Consequently, each
particle is entirely represented by the list of its pins



FIGURE 1. Schematic view of two spheres connected by a
few springs. Pins are marked as small chips on the surface of
each sphere. Two bonds cannot attach to the same pin, and a
given bond connects two different spheres. Typically 200−500
pins per particle surface are used.

(Fig.1), and its local frame which translates and rotates
with respect to the overall reference frame of the box.

Variants.–

In some conditions, non-uniform spatial distribution
of the pins can be considered. This could be the case
for more complex geometries, for example with platelets
for which one can clearly control the mechanism of
aggregation through the distribution of the pins (e.g. pins
localized on the largest faces of the platelets will result in
stack arrangement, while 2-dimensional structures will
appear if they are localized on the edges of the platelets).

Movement equations.–

Basics.–

When pressure is applied to the particle network, par-
ticles are submitted to the pressure forces, which, for
spheres, are central in nature (contrary to the forces due
to stretching of the bonds, which are essentially noncen-
tral). In the frame of the box, the full equations of motion
for the spherical particlei (radiusa, massm), submitted
to force~Fi and moment~Mi , are:

m
d~vi

dt
= ~Fi + λ

(

~vf −~vi
)

, (3)

5
2

ma2d~ωi

dt
= ~Mi +

4
3

a2λ
(

~ω f −~ωi
)

,

where~vi and ~ωi denote the translational and angular
velocity of the particle, and~vf , ~ω f the corresponding
macroscopic velocities of the fluid at the location of par-
ticle i. The coefficientλ is the proportionality constant
between the drag force on a particle and its relative trans-
lational velocity with respect to the fluid in the Stokes
regime.

In the present work, we will discuss only the quasi-
static regime,i.e. the characteristic compression time
is much larger than the relaxation time of the overall
structure. Within such approximation, the system evolves
through molecular dynamics (e.g. Verlet algorithm [14]),
according to (3) where the drag forces are neglected.
Pressure is then applied by small incremential steps, and
mechanical relaxation of the structure is achieved before
applying the next pressure step.

Variants.–

An alternative for the dynamics of such a system in
the quasi-static regime, consists in replacing the classi-
cal equations (3) by a Monte Carlo procedure. In this ap-
proach, a particle of the system is chosen randomly. This
particle is moved randomly (random translation + ran-
dom rotation) if the change of energy is consistent with
the Metropolis condition [14]. If the shift is effective, re-
laxation is performed,i.e.bonds are destroyed or created
according to the rules governing the bonds. All this se-
quence is repeated until statistical equilibrium is reached.

Since the deformation process is governed by energies,
one has to define forces through gradients. For example,
the pressure forceP is defined through the equation
∆E = −P∆H, where∆E is the difference of the system
energy for a decrease∆H of the system height. Note that
the total system energy is the sum of the energies of all
the bonds and of the energies previously released in the
system when bonds are broken.

Initial conditions.–

Basics.–

Before applying the pressure, one builds the system by
addingN particles in the box. We use standard reaction-
limited cluster-cluster aggregation (RCCA) model [15]
to generate randomly aggregates. This model is known to
correctly describe experimental flocculation of colloidal
particles – such as silica [16], polystyrene [17], or metal-
lic [18] colloids – in the conditions where the aggregation
rate is limited by the time it takes by the clusters to form
a bond. The model generates an ensemble of disordered
fractal aggregates, of fractal dimensionD f = 2.1.

Once an aggregate is generated, it is inserted randomly
at top of the box. The aggregate is then gently settled
onto bottom of the box, or onto existing particles, without
deformation of its structure nor overlap.



Variants.–

Any alternative pre-aggregationprocess can be used as
well. One important issue is to know if the proper sizes of
the initial aggregates may play a role in the compaction
process. Indeed, the size of the initial fractal clusters de-
fines a correlation length in the system, what can be quite
important for the subsequent collective deplacement of
the particles. This question is yet unsolved.

Below, we discuss an example (flow around fixed ob-
stacle) where pre-aggregation is not considered, all the
particles being placed randomly at the beginning, with a
definite volume fraction.

HOMOGENEOUS COMPRESSION

Results of the numerical model.–

A sketch of the visual aspect of the particle system
(bonds are not represented) is shown in Fig.2 for three
different pressures. these are projections onto a plane, so
the system appears more dense than it actually is. One
can note that, except for small statistical fluctuations, the
systems appear to be spatially homogeneous. This result
– which can be made more quantitative by a study of
the average volume fraction through slabs [11] –, is well
known in compression experiments [19].

Double-logarithmic plot for the external pressure ver-
sus the volume fraction of the particles is shown in Fig.3.
Several sets of data are represented, all of them obtained
from numerical simulations of systems with≃ 500 par-
ticles, 200 pins per particle. Four sets of values ofEd
are shown, namelyEd/Eo = 0.04,4,9, and in the range
360∼ 10000. The latter case corresponds to rupture
lengths comparable to the box size.

Two power-law behaviors

P/Po ∝ φδ , (4)

are clear on the Fig.3. One with a slopeδ ≃ 4.4 will
be called elastic as it corresponds to small amount of
bond breaks. This isnotexactly elastic behavior because
bonds are created through compression advancement,
but the created bonds are essentially permanent at this
stage. The other exponent isδ ≃ 1.7, and is recovered in
the mid-range of values of the volume fraction, namely
0.07 < φ < 0.5, for any value of the disruptive energy
Ed larger thanEo. This corresponds to plastic behavior
as the rate of creation-destruction process for the bonds,
is maximum [11].

An important point to notice here is that the equa-
tions (4) are constitutive equations dependent only on
the material [11]. Particularly, they do not depend, in the
statistical sense, on the initial conditions, on the pres-

FIGURE 2. Three pictures (projection) of the same system
during compaction under uniform pressure. The value ofEd/Eo
is here equal to 4, and the total number of particles is 500.
Volume fraction are respectively 0.06, 0.30 and 0.63 from top
to bottom. The dashed lines visualize the initial and actual
planes where external pressure is applied. Periodic boundary
conditions are used on all other sides.

sure increment (if small enough) or on the periodic or
fixed boundary conditions (if the system is large enough).
Even the proper values of some parameters, such as the
number of pins per particle (provided it is large enough),
or the polydispersity of the particle radius (if narrow), are
not relevant. Such universality allows direct comparison
between results of the numerical simulations and experi-
mental data on compression of colloidal pastes. This was
done successfully in recent works [19, 20, 21].

Theoretical arguments.–

The elastic behavior.–

When bond breaking is unlikely to occur (at the very
beginning of the compression process or because of the
large value of the disruptive energy), the system behaves
as a disordered elastic network. The response of the sys-
tem is due to the presence of resistant columns whose
structure is a consequence of the initial fractal morphol-
ogy of the individual aggregates. Given a homogeneous
arrangement of such disordered fractal aggregates, the
overall elastic modulusK, of the system, writes [22] :

K ∝ φ (3+x)/(3−D f ) , (5)

with the fractal dimension of the backbone of the individ-
ual clustersx ≃ 1.4. This leads toδ ≃ 4.8 in (4). Alter-
native derivations were proposed [23], leading to values
of exponentδ in between 4 and 5. Precise analysis of the
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FIGURE 3. Double-logarithmic plot of the reduced pressure
P/Po vs the volume fractionφ for various values of the dis-
ruptive energy,Ed : Ed/Eo = 4 (triangles),Ed/Eo = 9 (circles)
and various values ofEd/Eo above 360 (stars). A dashed line
is used for the smallest values ofEd (namelyEd/Eo = 0.04),
which exhibits fragile behavior as discontinuous jumps inφ
from 0.01 to 0.5 at P/Po ≃ 1.3. Full lines are the power-law
behaviors (4) with exponents 4.4 and 1.7 for the elastic and
plastic behaviors respectively.

theoretical arguments, with comparison with the numer-
ical simulations, remains to be done.

The plastic behavior.–

Rupture of the resistant columns occur if the applied
pressure is larger than the thresholdP⋆ for which the
density of elastic energy stored in a column becomes
equal to the average energy needed to break up all the
bonds linking two neighboring particles of the column
[24]. The latter energy is independent on the volume frac-
tion, thenP⋆ ∝

√
K with a proportionality constant inde-

pendent onφ . On the other hand, the effective stiffness
of a disordered column is [25] :K = nka/NrR2

⊥, with
Nr ∼ Hdmin the number of particles involved in the mini-
mal chain throughout a percolating system of overall size
H (anddmin ≃ 1.4 [26]). The distanceR⊥ follows a sim-
ple power-lawR⊥ ∝ H for the isotropic chains [27]. This
results in the power-law dependence of the critical pres-
sureP⋆ with the volume fraction as :

P⋆ ∝ φ1+dmin/2 . (6)

Interpretation of (6) in terms of the current pressureP,
can be done by the following argument [28]. WhenP
reaches the thresholdP⋆(φ) corresponding to the actual
volume fraction through (6), then the resistant column
of height H breaks into two or more fragments, and

FIGURE 4. Central part of a 2-dimensional colloidal disper-
sion flowing around an intruder in a box with periodic boundary
conditions. The flow goes regularly from top to bottom and
the intruder is fixed. Two sizes of particles are used in order
to avoid cristallization. On the left, location of the particles
(drawn as black circles) at a given time of the stationary state.
The bonds between particles are not drawn. The still intruder is
the large grey circle. On the right, instantaneous velocityof the
particles for the same system as on the left.

the volume fractionφ increases by elastic deformation
of the next resistant column. As this process goes on,
the system passes through a series of discrete states
(P⋆(φ),φ ). If the disordered system is large enough, the
states (P⋆(φ),φ ) are close to each other, and :

P ∝ φ1+dmin/2 , (7)

is then expected, with the exponent 1+dmin/2≈ 1.7.

FLOW AROUND OBSTACLE

We present here another experimental situation related
to the same problematics. Let us consider a colloidal
dispersion confined in between two glass plates. The
paste is flowing because of a pressure gradient, and a
fixed intruder (here, a disk) is placed in the center of the
system. This geometry was recently studied in details for
the granular matter [29]. The particles are put randomly
at the beginning of the experiments (real or numerical).

Contrary to the pure granular matter, short-range at-
tractive interactions exist now between the sticky parti-
cles. This induces strong correlations in the fluid, which
can be seen on Fig.4. In particular, the proper size of the
void created downstream after the intruder depends es-
sentially on the properties of the non-permanent micro-
scopic springs. The average flow pattern is another exam-
ple of a macroscopic field depending on the microscopic
properties of the material.



CONCLUSION

We presented in this paper a numerical model of sticky
granular systems, based on simple physical features,
working with a limited number of parameters. The model
allows realistic approach of the static and dynamic be-
haviors of these complex collective systems – generically
called pastes –, which exhibit plastic behavior and non-
linear response to mechanical stress. This numerical tool
allows to study in details the close relationship between
the microscopic interactions and macroscopic deforma-
tion or flow of a paste.

During compression of a colloidal dispersion, two
stages are clear and related to particular scaling laws.
In the first one, very few interparticle bonds are broken.
Displacement of colloidal aggregates within the struc-
ture lead to the collapse of the largest voids, while the
smallest voids and the local structure remain unchanged.
In the second stage, the compression causes the rupture
of bonds everywhere in the system and the collapse of
voids of any size. As a result, the less-dense regions of
the aggregates are compressed, and they form a homo-
geneous dispersion. Meanwhile, the denser cores of the
aggregates are pushed through this soft material, collect
more particles, and turn into dense space-filling lumps.

During flow of a paste, the interparticle bonds generate
strong correlation effects in the Non-newtonian complex
fluid, resulting in self-organized structures such as large
voids around obstacles.
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